3eLes théorèmes de Pythagore et de Thalès
Les théorèmes de Pythagore et de Thalès
I. Théorème de Pythagore : rappels
1) Les propriétés
Théorème de Pythagore :
Si un triangle est rectangle,
alors le carré de l’hypoténuse est égal à la somme des
carrés des côtés de l’angle droit.
Réciproque du théorème de Pythagore : Dans un triangle,
si le carré du plus grand côté est égal à la somme
des carrés des deux autres côtés,
alors ce triangle est rectangle.
2) Les applications
Calculer la longueur de l’hypoténuse d’un triangle rectangle
Calculer JK :
J
I
K
2 cm 1,5 cm
Je sais que le triangle IJK est rectangle en Iet :
IJ = 2 cm
IK = 1,5cm
Alors, d’après le théorème de Pythagore :
JK2=IJ 2+IK2
JK2= 22+ 1,52
JK2= 4 + 2,25
JK2= 6,25
JK = 2,5cm
3g1.cours 1witzel / 5 novembre 2008
3eLes théorèmes de Pythagore et de Thalès
Calculer la longueur d’un côté de l’angle droit d’un triangle rectangle
Calculer RT :
S
R
T
15 cm
17 cm
Je sais que le triangle RST est rectangle en Ret :
RS = 15 cm
ST = 17 cm
Alors, d’après le théorème de Pythagore
ST 2=RS2+RT 2
172= 152+RT 2
289 = 225 + RT 2
RT 2= 289 225
RT 2= 64
RT = 8 cm
Déterminer si un triangle est rectangle ou non
Méthode : On commence par regarder si l’égalité de Pythagore est vérifiée :
on calcule le carré du côté le plus grand
on caclule la somme des carrés des deux autres côtés
on compare
Si l’égalité de Pythagore est vérifiée, c’est la réciproque du théorème de Pythagore qui permet de conclure que le
triangle est rectangle.
Par contre, si l’égalité de Pythagore n’est pas vérifiée, c’est le théorème de Pythagore qui permet de conclure que le
triangle n’est pas rectangle.
On considère le triangle DEF :
E
D
F
24 cm
25 cm
7 cm
Dans le triangle DEF , le plus grand côté est EF et :
EF = 25 cm
DE = 24 cm
DF = 7 cm
D’une part :
EF 2= 252=
625
3g1.cours 2witzel / 5 novembre 2008
3eLes théorèmes de Pythagore et de Thalès
D’autre part :
DE2+DF 2= 242+ 72
DE2+DF 2= 576 + 49 =
625
D’où :
EF 2=DE2+DF 2
D’après le théorème de Pythagore, le triangle DEF est rectangle en D.
II. Théorème de Thalès
1) Triangles en situation de Thalès
B C
A
M N
figure 1
B C
A
MN
figure 2
Définition : Dans chacune des figures ci-dessus, on dit que les triangles ABC et AM N sont en situation de Thalès
car :
1. les droites (BM ) et (CN ) sont sécantes en A
2. les droites (BC) et (M N ) sont parallèles
2) La propriété
Théorème de Thalès :
Si deux triangles ABC et AM N sont en situation de Thalès,
alors leurs côtés sont
proportionnels, c’est-à-dire :
AM
AB =AN
AC =M N
BC
Calculer une longueur
Calculer RS :
J K
I
RS
8 cm
3 cm
6 cm
3g1.cours 3witzel / 5 novembre 2008
3eLes théorèmes de Pythagore et de Thalès
1ère étape : triangles en situation de Thalès
Les triangles IJK et IRS sont en situation de Thalès car :
1. les droites (JR) et (KS) sont sécantes en I
2. les droites (JK) et (RS) sont parallèles
2ème étape : théorème de Thalès
D’après le théorème de Thalès :
IR
IJ =IS
IK =RS
JK
3ème étape : choisir une égalité et calculer
En particulier :
IS
IK =RS
JK
Donc : 3
8=RS
6
RS =6×3
8= 18 : 8 = 2,75 cm
3) La propriété réciproque
Réciproque du théorème de Thalès :
Si les points A,B,Met les points A,C,Nsont alignés dans le même ordre,
et si AM
AB =AN
AC ,
alors les droites (BC) et (M N ) sont parallèles.
Déterminer si deux droites sont parallèles ou non
Méthode : On commence par regarder si la première égalité de Thalès est vérifiée.
Si elle est vérifiée, c’est la réciproque du théorème de Thalès qui permet de conclure que les droites sont parallèles.
Par contre, si l’égalité de Thalès n’est pas vérifiée, c’est le théorème de Thalès qui permet de conclure que les droites
ne sont pas parallèles.
P L
T
FG
9 cm
4 cm
6 cm
3 cm
Les points T,L,Get T,P,Fsont alignés dans le même ordre.
Calculons : T F
T L =3
6= 0,5
T G
T P =4
90,44
Donc : T F
T L 6=T G
T P
3g1.cours 4witzel / 5 novembre 2008
3eLes théorèmes de Pythagore et de Thalès
D’après le théorème de Thalès, les droites (GF ) et (P L) ne sont pas parallèles.
III. Réduction et agrandissement
B C
A
M N
1) Réduction
Les triangles AM N et ABC sont en situation de Thalès. D’après le théorème de Thalès :
AM
AB =AN
AC =M N
BC =k
Cette égalité signifie que les côtés du petit triangle sont proportionnels aux côtés du grand triangle : on obtient les
longueurs du petit triangle en multipliant celles du grand par le coefficient de proportionnalité k.
Définition : On dit que AM N est une réduction de ABC ; le rapport de réduction est AM
AB (ou AN
AC , ou M N
BC ).
::::::::::
Remarque:
:
Le rapport de réduction est un nombre plus petit que 1.
Propriété :
Pour calculer les longueurs de la réduction d’un triangle, on multiplie les longueurs de ce triangle par le
rapport de réduction.
Les angles de la réduction d’un triangle sont identiques à ceux de ce triangle.
::::::::::
Remarque:
:
La deuxième partie de cette propriété se démontre avec des angles alternes-internes.
2) Agrandissement
De la même manière, ABC est un agrandissement de AM N . Tout ce qui a été dit pour les réductions reste vrai.
!Le rapport d’agrandissement est donné par l’inverse des fractions ci-dessus : AB
AM et non AM
AB , etc.
::::::::::
Remarque:
:
Le rapport d’agrandissement est un nombre plus grand que 1.
3g1.cours 5witzel / 5 novembre 2008
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !