principales m É t h o d e s dÉ v a l u a t i o n
14 4
Variantes fondées
sur les régressions linéaires
Principe
Les méthodes fondées sur les gressions liaires de multiples de valorisation
consistent à tenter de limiter les écarts obtenus avec la méthode des comparables,
ou méthode des multiples, lorsque différents agrégats sont utilisés : chiffre d’affaires
d’une part, indicateurs de rentabilité tels que l’EBITDA ou l’EBIT d’autre part.
Ces thodes cherchent à adapter et à rapprocher les résultats obtenus avec la méthode
des comparables avec les caractéristiques spécifiques de la société à valoriser.
Une réponse à certaines limites
de la méthodes des comparables
Lors d’une approche de valorisation par la méthode des comparables, le calcul de
multiples (boursiers ou de transactions), de chiffre d’affaires d’une part et d’EBITDA
ou d’EBIT de l’autre, peuvent aboutir à des résultats significativement différents.
Ces différences peuvent quelquefois être liées à un différentiel de rentabilité signi-
ficatif entre la cible et les sociétés de l’échantillon, la première étant nettement plus
ou moins performante que ce dernier.
En particulier, les multiples de chiffre daffaires d’un échantillon de sociétés cotées
comparables ou de transactions comparables peuvent présenter une importante
disparité et se révéler difficilement applicables de façon directe au chiffre daffaires
de la société à évaluer.
La valorisation peut alors potentiellement passer du simple au double, voire plus,
selon le multiple appliqué au chiffre d’affaires, ce qui explique le manque occa-
sionnel de pertinence de cette méthode d’évaluation.
Variantes fondées sur les régressions liaires
Livre EVALUATION.indb 144 10/08/09 14:47:56
Évaluation d'entreprises - V. Juguet, Ph. Giraudon & S. Onnée - © Dareios et Pearson Education
Collection Gestion Appliquée : www.gestionappliquee.com
145
8
mÉ t h o d e s d e s c o m p a r a b l e s
Une adaptation des résultats obtenus
avec la méthode des comparables
Les régressions statistiques des multiples de chiffre d’affaires permettent de réduire
les écarts entre les niveaux de valorisation des sociétés de léchantillon de sociétés
cotées ou de transactions comparables en intégrant un critère de comparaison
supplémentaire, par exemple la marge d’EBITDA ou d’EBIT.
La méthode consiste à répertorier, pour chaque société de l’échantillon, son multiple
de chiffre d’affaires, sa marge d’EBITDA et sa marge d’EBIT. Une fois ces trois para-
mètres relevés, il est possible de dessiner un graphique avec le multiple du chiffre
d’affaires en axe des ordonnées (vertical) et la marge en axe des abscisses (horizontal).
Dans un premier graphique, la marge peut être celle d’EBITDA et, dans un second,
la marge d’EBIT. Une fois les points correspondant à chaque société positionnés
sur le graphique, il est possible de relever sil existe ou non une « tendance », c’est à
dire si les multiples de chiffre d’affaires progressent ou non de façon plus ou moins
linéaire avec la marge (d’EBITDA ou d’EBIT).
Visuellement, sur le graphique, une tendance peut être relevée s’il est possible de
tracer une droite se trouvant à peu près à équidistance de la majorité des points.
Mathématiquement, l’équation de cette droite (résumant ses caractéristiques) peut
être obtenue par régression statistiques des données de chaque société (multiple de
chiffre d’affaires et taux de marge).
Calcul de la droite de régression linéaire à partir d’un échantillon
Léquation de la droite de régression linéaire est de la forme :
y
=
ax
+
b, soit Multiple de CA
=
a
x
marge
+
b
avec
{
a
=
covariance du multiple de CA et de la marge
=
cov (multiple de CA, marge)
variance de la marge 2 marge
b
=
moyenne du multiple de CA
a
x
moyenne de la marge
Un coefficient « », dit de « corrélation », permet destimer dans quelle mesure l’équa-
tion de la droite obtenue permet de positionner les points représentant chaque
société les uns par rapport aux autres.
Calcul du coefcient de corlation
Coefcient de corrélation ( )
=
cov (multiple de CA, marge)
=
a
x
marge
multiple de CA
x
marge multiple de CA
Plus le coefficient est proche de 1, plus la droite obtenue parvient à expliquer la
relation entre multiple de chiffre d’affaires et taux de marge et plus ce multiple
progresse de façon linéaire avec la marge concernée. Une fois léquation de la droite
obtenue avec un coefficient de corrélation satisfaisant (généralement compris entre
0,8 et 1), il est possible de déduire le multiple de chiffre daffaires corrigé de la cible
à valoriser à partir de sa marge et de l’appliquer au CA de la cible.
Variantes fondées sur les régressions liaires
Livre EVALUATION.indb 145 10/08/09 14:47:56
Évaluation d'entreprises - V. Juguet, Ph. Giraudon & S. Onnée - © Dareios et Pearson Education
Collection Gestion Appliquée : www.gestionappliquee.com
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !