(X+ 1)n−Xn−1X2+X+ 1
(X+ 1)n−Xn−1X2+X+ 1
n∈N(1 + X4)n−Xn1 + X+X2R[X]
(X−2)2n+ (X−1)n−1 (X−1)(X−2)
Pn= (X−2)2n+ (X−1)n−1
PnX−1X−2Q1Q2
Pn(X−1)(X−2) Q2−Q1
(X−2)2n−2−(X−2)2n−3+··· − (X−2) + 1+(X−1)n−2+ (X−1)n−3+··· + (X−1) + 1.
X50 X2−3X+ 2
X+√317 X2+ 1
X8−32X2+ 48 X−√23
λ, µ ∈CX2+X+ 1 X5+λX3+µX2+ 1
P∈K[X]P X2+ 1 X2−1 2X−2
−4X P X4−1
(Xn−1, Xm−1)
m, n ∈N∗(Xn−1, Xm−1)
P, Q ∈K[X]D= (P, Q)
U, V ∈K[X]
UP +V Q =D
deg U < deg Q−deg D
deg V < deg P−deg D.
U V
(U, V )7−→ UA +V B
A, B ∈K[X]p= deg A q = deg BΦ : Kq−1[X]×Kp−1[X]−→ Kp+q−1[X]
(U, V )7−→ UA +V B
A∧B= 1 ⇐⇒ Φ
(P(X), P (−X)) (P(X), P (−X))
P∈K[X] (P(X), P (−X)) (P(X), P (−X))
A◦P|B◦P⇒A|B
A, B, P ∈K[X]P A ◦P B ◦P A B