D1
360 120 = 240 D1
D1A=D1D2
P(A) = (A)
(Ω) =240
120000 =2
1000 = 0,002 Ω
B=D1D2
D1D2
P(B) = 1 P(D1D2) = 1 (P(D1) + P(D2)P(D1D2))
P(D1) = (D1)
(Ω) =360
120000 =3
1000 = 0,003
P(D2) = (D2)
(Ω) =600
120000 =6
12000 =1
2000 = 0,005
P(D1D2) = (D1D2)
(Ω) =120
120000 =1
1000 = 0,001
P(B) = 1 (0,003 + 0,005 0,001) = 1 0,007 = 0,993
X(Ω) = {2,45 ; 4,05 ; 6,45 ; 8,05}P(X= 2,45) = P(B) = 0,993
P(X= 4,05) = P(D1D2) = P(A) = 0,002
P(X= 8,05) = P(D1D2) = 0,001
P(X= 6,45) = 1 (P(X= 2,45) + P(X= 4,05) + P(X= 8,05)) = 1 (0,993 + 0,002 + 0,001)
= 1 0,996 = 0,004
X
xi
P(X=xi)
E(X) =
4
i=1
xiP(X=xi) = 2,45 ×0,993 + 4,05 ×0,002 + 6,45 ×0,004 + 8,05 ×0,001 = 2,4748
e
10 1 = 9
51 = 4
• −1n
1 + 3 + n=n+ 4
P(X= 9) = (X= 9)
(Ω) =1
n+ 4 n+ 4
P(X= 4) = (X= 4)
(Ω) =3
n+ 4 n+ 4
P(X=1) = (X=1)
(Ω) =n
n+ 4 n n + 4
X
xi1
P(X=xi)1
n+ 4
3
n+ 4
n
n+ 4
E(X) =
3
i=1
xiP(X=xi) = 9 ×1
n+ 4 + 4 ×3
n+ 4 1×n
n+ 4 =9 + 12 n
n+ 4 =21 n
n+ 4
E(X) = 0 21 n
n+ 4 = 0
E(X)=0 21 n= 0 n= 21
10 m1
20 n= 16
5m3
20
• −m16
20 =4
5
X
xi10 m5mm
P(X=xi)1
20
3
20
4
5
E(X) =
3
i=1
xiP(X=xi) = (10 m)×1
20 + (5 m)×3
20 m×4
5
=10 m+ 3(5 m)16m
20 =10 17m+ 15 3m
20 =25 20m
20 =54m
4
E(X) = 0 54m
4= 0 54m= 0 4m= 5 m=5
4= 1,25
X
xi10 m5mm
P(X=xi)1
n+ 4
3
n+ 4
n
n+ 4
E(X) = (10 m)×1
n+ 4 + (5 m)×3
n+ 4 m×n
n+ 4
=10 m+ 3(5 m)nm
n+ 4 =10 m+ 15 3mnm
n+ 4 =25 4mnm
n+ 4
E(X)=0 25 4mnm
n+ 4 = 0
E(X) = 0 25 4mnm = 0
n m nm + 4m= 25 m(n+ 4) = 25
1 + x6x2+x3f(x)6g(x)
CfCgS= [1 ; +[
f(x)g(x) = 1 + x(x2+x3) = 1 + xx2(1 + x)x2+x3x2
(1+x)f(x)g(x) = (1+x)x2(1+x) = (1+x)(1x2)
f(x)g(x) = (1+x)(1+x)(1x) 1x2= (1+x)(1x)f(x)g(x) = (1+x)2(1x)
(1 + x)260f(x)g(x) = (1 + x)2(1 x)
(1 x)
1 + x6x2+x3f(x)6g(x)f(x)g(x)601x60
1 + x6x2+x316x
1 + x6x2+x3S= [1 ; +[
N0,35N
6×3100 + 500 ×52 + 2000 ×12 = 68600
0,35N > 68600 N > 68600
0,35 N > 196000
3100 0,35 = 3099,35
52 0,35 = 51,65
12 0,35 = 11,65
• −0,35
G P (G= 3099,65) = 6
280000 =3
14000
P(G= 51,65) = 500
280000 =1
560
P(G= 11,65) = 2000
280000 =1
140
P(G=0,35) = 280000 6500 2000
280000 =277494
280000 =19821
20000
G
xi3099,65 51,65 11,65 0,35
P(G=xi)3
14000
1
560
1
140
19821
20000
E(G) =
4
i=1
xiP(G=xi) = 3099,65×3
140000 +51,65×1
560 +11,65×1
140 0,35×19821
20000 =0,105
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !