G60 = 223 5
npp G 1< n5= 5k+ 1|12
n5= 6 5 G G
P, Q P6=Q P, Q 'C5
u:P\ {P}
ggQg1
P6=Q gQg1\ {P}gP
u(g) = u(g0)g, g0P gg1G(Q)Q
5G(Q)gg16=e gg1Q
PQ={e}g=g0u
α P P =< α >
ψ:1(F5) = F5∪ {∞}
ψ() = P ψ(k) = αkkkF5ψ(0) = Q
G
ϕ:GS
ϕ(G)A'A6
gG6
ψ G G1(F5)
ψ(g.x) = g(x).g1
x1(F5)gG G A1(F5)
α α :xx+ 1 1(F5)
ψ(α.) = α.P1=P=ψ()
kF5
ψ(α.k) = α(αkk)α1=αk+1k1=ψ(k+ 1)
α1(F5)1(F5)\ {∞} =F5α
(0,1,2,3,4)
n5= 6 G(P)C10 D5
G6G(P)'D5M=G(P)G(Q)
M=< β >={, β}
G(P) = PoM=< α, β >
α β βαβ1=α1β β :x→ −x
1(F5)
ψ(β.) = β.P1=P=ψ()
kF5
ψ(β.k) = β(αkk)β1= (βαkβ1)(β1)(βαkβ1) = αkk=ψ(k)
Q=<1>={1,1} ⊂ F?
5F?
5N=F?
5\Q=
{2,3}β1(F5) 0 Q N
β(1,4)(2,3)
βG(M) = G(β)G(β)S(β)
G C4
C2×C2GAG
G(M) =< β, γ >
β γ βγ =γβ
G(P)G H G
G(P)H H G(P)G
G=< α, β, γ >
G1(F5)G=G(P) =< α, β >
γ()6=βγ() = γβ() = γ()γ()β
γ()=0 γ
β1(F5) (0,)
γ a, b 1(F5)\ {0,∞} =F?
5kF?
5
βγ(k) = γβ(k) = γ(k) = γ(k)
γ(a) = a γ(a) = a{a, b}N={2,3}
Q={1,4}γ= (2,3)(0,)βγ = (1,4)(0,)
γ γβ γ = (1,4)(0,)γ
x 1
x1(F5)
G'2(F5)
G168 = 233 7
npp G 1< n7= 7k+ 1|24
n7= 8 7 G G
P, Q P6=Q P, Q 'C7
u:P\ {P}
ggQg1
P6=Q gQg1\ {P}gP
u(g) = u(g0)g, g0P gg1G(Q)Q
7G(Q)gg16=e gg1Q
PQ={e}g=g0u
α P P =< α >
ψ:1(F7) = F7∪ {∞}
ψ() = P ψ(k) = αkkkF7ψ(0) = Q
G
ϕ:GS
ϕ(G)A'A8
gG15
ψ G G1(F7)
ψ(g.x) = g(x).g1
x1(F7)gG G A1(F7)
α α :xx+ 1 1(F7)
ψ(α.) = α.P1=P=ψ()
kF7
ψ(α.k) = α(αkk)α1=αk+1k1=ψ(k+ 1)
α1(F7)1(F7)\ {∞} =F7α
(0,1,2,3,4,5,6)
n7= 8 G(P)G
15 M=G(P)G(Q)M
(G(P).G(Q)) = 212>168 M
M=< β >
G(P) = PoM=< α, β >
α β βαβ1=αrr6≡ 0,1 7 βαkβ1=αrk
β3= 1 α=αr3r31 7 r= 2 r= 4
r= 4 βαβ1=α4β2αβ2=α2β M
β2
βαβ1=α2
β β :x2x1(F7)
ψ(β.) = β.P1=P=ψ()
kF7
ψ(β.k) = β(αkk)β1= (βαkβ1)(β1)(βαkβ1) = α2k2k=ψ(2k)
Q=<2>={1,2,4} ⊂ F?
7F?
7N=F?
7\Q=
{3,5,6}β1(F7) 0 Q N
β(1,2,4)(3,6,5)
M G 1< n3= 3k+ 1|56
n3
n0
3G(P)n0
3= 3k+ 1|7
n0
3G(P)n0
3= 7
n3= 28
G(M)G(M)C6S3
U G
v< v2> G
U6=uU H G g G
H=g < u2> g1H=<(gug1)2> gug1
vv2U G
wG < w > < w >=< v2>
v w =v2w=v4= (v5)2v5G
n7= 8 n3= 28
G
U=
G(M)'S3
G(M) =< β, γ > β γ γβγ1=β1
G(M)γ γ0=βγβ1γ00 =β2γβ2
G(P)G H G
G(P)H
G H
φH:GSG/H
gφH(g) : xgx
168|4!
G
G=< α, β, γ >
G1(F7)G=G(P) =< α, β >
γ()6=β1γ() = γβ() = γ()γ()β
γ()=0 γ
γ0β k 1(F7)\{0,∞} =
F?
7
β1γ(k) = γβ(k) = γ(2k)=4γ(k)
γ(1) Q γ(Q) = Q γ (1,2,4)
γ(1) N γ Q N β γ
γ0γ00 G(P)γ(1) = 6
γ(2) = 3 γ(4) = 5 γ= (1,6)(2,3)(4,5)(0,)γ
x 1
x1(F7)
G'2(F7)
X
D P(P)X
x, y P D ∈ D x, y D
D, D0∈ D DD0={x}xP
X
D∈ D
X={1,2,3,4,5,6,7}
D={{1,2,4},{2,3,5},{3,4,6},{4,5,7},{5,6,1},{6,7,2},{7,3,1}}
G(X, D)
G={σS7/D ∈ D σ(D)∈ D}
π= (1,2,3,4,5,6,7) G G α = (2,7,6)(4,3,5) G β =
(2,4)(5,6) G1G
σG1,2σ(4) = 4
G1,2={e, (3,5)(6,7),(3,6)(5,7),(3,7,)(5,6)}
(G)=7.6.(G1,2) = 168
K G G K
G G
n7K G
(1,7,5,3,4,2,6) = απα1G π
n7= 8 (K)49 K=G G
G X B X
X g G g(B) = B g(B)B=∅ ∅
X{x}xX G
X k 1X(k)Xkk
(x1, . . . , xk)G X
k G X(k)G X
G X k k 2
OB x y z X z 6=x
gG g(x) = x g(y) = z g(B) = B z B B =XM
G X
K G x
OKM
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !