Lycée Alexandre Dumas – 2009-2010
Didier Aribaud
1. Développer, réduire et ordonner :
A = (3x – 4)²
A = 9x² – 2×3x×4 + 16
A = 9x² – 24x +16
B = (9x² – 2×3x×5 + 25) + (9×2x + 9×(–1) – x×2x – x×(–1))
B = (9x² – 30x + 25) + (18x – 9 – 2x² + x)
B = 9x² – 30x + 25 + 19x – 9 – 2x²
B = 7x² – 11x + 16
C = 5x×1 – 5x × 3x – 2×1 + (–2)×(–3x) – [(3x)² – 2×3x×4 + 4²]
C = 5x – 15x² – 2 + 6x – 9x² + 24x – 16
C = – 24x² + 35x – 18
2. Factoriser :
D = 3 × 9 × x² × x – 3 × 4x
D = 3x × (9x² – 4)
D = 3x(3x – 2)(3x + 2)
E = (4x – 5)(4x + 5)
F = 5(x + 3) + (x + 3)(x + 2)
F = (x + 3)(5 + x + 2)
F = (x + 3)(x + 7)
G = (2x – 3)[6x – (x – 5)]
G = (2x – 3)(6x – x + 5)
G = (2x – 3)(5x + 5)
G = 5(2x – 3)(x + 1)
H = (x – 5)(7x – 4) + (7x – 4)²
H = (7x – 4)[x – 5) + (7x – 4)]
H = (7x – 4)(x – 5 + 7x – 4)
H = (7x – 4)(8x – 9)
I = [(3 – 2x) – (4x – 5)][(3 – 2x) + (4x – 5)]
I = (3 – 2x – 4x + 5)(3 – 2x + 4x – 5)
I = (8 – 6x)(2x – 2)
I = 2(4 – 3x)×2(x – 1)
I = 4(4 – 3x)(x – 1)
3.
On donne P = (4x – 5)² + (4x – 5)(x + 1)
Développer, réduire et ordonner
P = (4x – 5)² + (4x – 5)(x + 1)
P = (16x² – 2×4x×5 + 25) + (4x×x + 4x×1 – 5×x –5×1)
P = 16x² – 40x + 25 + 4x² + 4x – 5x – 5
P = 20x² – 41x + 20
P = (4x – 5)² + (4x – 5)(x + 1)
P = (4x – 5)[(4x – 5) + (x + 1)]
P = (4x – 5)(5x – 4)
3. Résoudre l’équation P = 0 en utilisant le résultat de la question 2.
P = 0 ou encore (4x – 5)(5x – 4) = 0
4x – 5 = 0 ou 5x – 4 = 0
4x = 5 ou 5x = 4
x =
ou
x
4.
Calculer P pour x = 1, puis pour x = 0 et enfin pour
x
.
x = 1 : P = 20x² – 41x + 20 = 20×(1)² – 41×(1) + 20 = 20 – 41 + 20 = – 1
x = 0 : P = 20x² – 41x + 20 = 20×0² – 41×0 + 20 = 20