déroulement complet du processus infectieux. De plus, la synthèse de A1 commande la dégradation de 
l'ADN bactérien et le détournement de la machinerie de transcription. Nous disposons de phages mutés 
dans les gènes A1 et A2, ce qui permet d'étudier la fonction des gènes précoces et leurs interactions avec 
les protéines de l'hôte alors que le transfert de l'ADN est bloqué à la première étape. Ces propriétés de 
T5 permettent d'étudier le détournement des fonctions cellulaires indépendamment des autres étapes de 
l'infection (réplication du génome et assemblage de la particule virale). 
 Ce  projet  de  thèse  s'inscrit  dans  l'étude  globale  des  mécanismes  moléculaires  qui  contrôlent  le 
transfert de l'ADN en deux étapes et la neutralisation des ressources de l'hôte. Le premier objectif est de 
caractériser la fonction  des  protéine  A1  et  A2.  Ces  protéines  peuvent  être  surproduites et purifiées et 
nous avons débuté leur caractérisation biochimique. Des mutants de T5 seront construits, codant pour 
A1  ou  A2  fusionnées  avec  des  étiquettes  de  type  "TAP-tag"  afin  d'identifier  les  protéines  virales  et 
bactériennes  partenaires  de  A1  et  A2 au  début  de  l'infection.  Les  interactions  ainsi  établies  seront 
analysées  in  vitro en  reconstituant  les  complexes  à  partir  des  protéines  purifiées.  Si  ces  complexes 
peuvent être obtenus de manière stable, leur caractérisation structurale sera effectuée. 
Ce  projet intégrera  également  l'identification  d'autres  gènes  précoces  impliqués dans  la  neutralisation 
des fonctions bactériennes. Différentes données génétiques indiquent que seulement 5 gènes, en plus de 
A1  et  A2,  sont  essentiels pour  l'arrêt  immédiat  de  la  croissance  de  l'hôte  et  le  détournement  de  son 
métabolisme. La fonction et les partenaires de ces protéines précoces seront explorés par des approches 
génétiques et biochimiques.  
 
Project description:  
Bacteriophages, the natural predators of bacteria, can kill their host with high efficiency. In the early 
stages of infection phages defeat bacterial defenses and exploit specific cellular functions to serve their 
needs  and  propagate  in  their  host.  The  strategies  by  which  phages  take  over  the  host  cell  resources 
remain obscure and have been studied in a very limited number of phages. An up to date investigation 
of these mechanisms is essential for the main following reasons: i) The early-expressed genes are highly 
diverse from one phage to another and most of them have no assigned function. They thus represent a 
library  of  novel  genes  whose  functions  are  crucial  for  host  neutralization.  ii)  By  deciphering  the 
mechanisms  of  host  takeover,  we  expect  to  identify  host  factors  targeted  by  phage,  which  constitute 
attractive targets for new antimicrobial drugs. 
We use the Escherichia coli phage  T5  as  a  model system  to  investigate  the  early  stages  of  phage 
infection.  T5  uses  a  unique  two-step  DNA  delivery  strategy  that  controls  the timing  of  host  function 
diversion. After binding of T5 to its host receptor FhuA, only 8% of the genome enters the bacterial cell 
before  injection  temporarily  stops.   Early  proteins  encoded  by  this  region  of  the  genome  are  then 
expressed  and  affect  vital  host  functions:  the  bacterial  DNA  is  degraded,  the  RNA  polymerase  is 
redirected towards the transcription of viral genes, the systems of restriction/modification and of DNA 
repair are inactivated. Two of early proteins, A1 and A2, are required for resuming the DNA transfer, 
which takes place after a few minutes, allowing the completion of the infectious process. Moreover the 
synthesis of A1 controls the onset of bacterial DNA degradation and transcription machinery hijacking. 
As  we  have  T5  mutants  of  the  A1 or A2 proteins,  we  can  “freeze”  infection  just  after  the  first  step 
transfer of the viral genome. This gives us the opportunity to investigate the mechanism of host takeover 
independently of the further steps of phage replication and assembly.  
This PhD project is part of a global study of the molecular mechanisms, which control the two-step 
DNA transfer and the neutralization of host resources. First, it aims at characterizing the function of A1 
and  A2  proteins. These  proteins  can  be  overproduced  and  purified  and  we  have  undertaken their 
biochemical characterization. New mutants of T5 will be constructed, encoding tag fusion proteins A1 
or A2 (type “TAP-tag”) in order to identify the viral and bacterial partners of A1 and A2 at the onset of 
infection.  The  interactions  established in  this  way will  be  analyzed  in  vitro by  reconstituting  the 
complexes  starting  from  purified  proteins.  If  stable  complexes  can  be  obtained,  their  structural 
characterization will be carried out.  
This project  will  also include the  identification  of  other  early  genes  involved in  the  neutralization  of 
bacterial functions. Genetic  data  indicate  that  only  5  genes,  besides  A1  and  A2,  are  essential  for  the 
immediate diversion of the bacterial metabolism. The functions and partners of these early proteins will 
be investigated by genetic and biochemical approaches.