I1=Z1
0
√x+2x,
I2=Z2
0
x√x+1x,
I3=Z3
1
√3−x x,
I4=Z5
0
√5−x x.
xexp(−x),xexp(2x),xsin x,x4ln x,
x2exp(x), , x33x,xtan2x,xcos2x,
ln x, ln(x2+1),(ln x)3, sin(ln x), cos(ln x).
I=Zπ/2
0
16xcos4x x.
f g R
f(x) = sin2xcos x,g(x) = sin3x.
F f G
g
Zπ/2
0
9xsin2xcos xdx.
I1=Z1
0
ln(x2−2x+4)x,
I2=Z2/3
0
ln(9x2+6x+4)x,
I3=Z4
1
ln(2x2+5x−3)x,
I4=Z−3
−4
arctan x+3
x+5x.
Zx
√4x2+4x+1Zx
√x2−4x,
Zx
√x2−4x+9,Zθ
√5+2θ−4θ2,
Zϕ
√2+ϕ−ϕ2,Zx
√x2+2x+3.
Zπ/3
0
x
cos2(x) + 3 sin2(x)
Z2π/3
0
x
5+4 cos(x)
Zπ/4
0
x
cos3(x)
Zπ/2
0
sin 2x
(2+cos(x))2x
Zπ/2
0
x
cos(x) − 2 sin(x) + 3
f: [a;b]→RF
Rb
af(x)x F(b) − F(a)
f
[a;b]M
x∈[a;b]|f0(x)|6M n ∈N
xk
xk=a+k
n(b−a),k=0, 1, ···n.
x0=a xn=b
Sn=
n−1
X
k=0
f(xk)b−a
n.
F(b) − F(a) =
n−1
X
k=0
(F(xk+1) − F(xk)).
ξk∈]xk;xk+1[k=0, 1, ···n−1
F(b) − F(a) = Sn+
n−1
X
k=0
f0(ξk)
2b−a
n2
.
σn
|σn|6M(b−a)2
2n.
limn→+∞Sn
lim
n→+∞
Sn=F(b) − F(a).