Comment envoyer le plus loin possible une balle de golf

Comment envoyer le plus loin possible une balle de golf ?
Situation :
Le golf est un sport de précision se jouant en plein air, qui
consiste à envoyer une balle dans un trou à l'aide de clubs. Le but
du jeu consiste à effectuer, sur un parcours défini, le moins de
coups possible.
Lorsqu’une balle de golf est frappée par le club, l’impact, d’une
durée inférieure à une milliseconde, permet d'envoyer la balle à
plusieurs centaines de mètres avant qu'elle ne retombe au sol.
Ainsi, lors de son premier coup, un golfeur professionnel peut
envoyer la balle avec une vitesse de 250 km/h à une distance de
plus de 400 m. Pour réussir une telle performance, le choix du
matériel et de la balle, la technique du golfeur, la trajectoire choisie sont déterminants.
Problématique :
Quels sont les différents paramètres qui permettent à un golfeur d'atteindre la plus grande distance
possible lorsqu'il frappe la balle ?
Analyser :
Proposer un protocole expérimental permettant de vérifier que le modèle mathématique ci-dessous s’applique
au mouvement d’un projectile dans un champ de pesanteur.
Matériel disponible :
- Une balle de golf
- Une webcam sur ordinateur portable + notice
- Logiciel de pointage AVIMECA + notice
- Tableur grapheur REGRESSI + notice
Document 2 : Angle de tir
tanα = 

Formules mathématiques
tan α = sinα / cosα
• 2sinα.cosα = sin2α
Document 3 : Intensité de pesanteur g
Le champ de pesanteur est le champ attractif qui s'exerce sur tout
corps matériel (donc doté d'une masse) au voisinage de la Terre ou
d'une autre planète. Il est généralement appelé plus simplement
pesanteur. Il s'agit d'un champ d'accération dont l'intensité, à la
surface de la Terre à l'altitude 0, vaut approximativement 9,81 m.s-2
(ou 9,81 N/kg).
Source : Wikipédia
Réaliser :
1. Filmer le mouvement d’une balle de golf
Lancer la balle avec une vitesse initiale
0 faisant un angle α
avec le plan horizontal. Filmer son mouvement en s’aidant
des consignes données par la figure ci-contre :
2. Pointage dans Avimeca
Choisir l’origine du mouvement à l’instant où la boule
quitte la main du lanceur. Faire le pointage.
Exporter les mesures dans Regressi
3. Graphiques
Ajouter 3 colonnes pour calculer la vitesse : vx(t) = 
 , vy(t) = 
 et v = 
• Ajouter 2 colonnes pour calculer l’accélération : ax(t) = 
 , ay(t) = 
 et a = 
Comparer la valeur de l’accélération à la valeur de g.
Tracer 3 graphes : Vx et Vy = f(t) ; x et y = f(t) ; y = f(x).
Pour chaque cas, tracer à main levée la courbe obtenue et noter l’équation.
4. Exploitation
Vitesse initiale : Trouver à l’aide des graphes les coordonnées v0x et v0y du vecteur
0 et trouver sa valeur V0).
• Angle de tir : Trouver la valeur de cet angle α (angle avec l’horizontale).
5. Vérification du modèle mathématique
A l’aide de la vitesse initiale et de l’angle de tir trouvés au 4. , calculer les coefficients de l’équation de la
trajectoire y = f(x) (voir document 1)
• Comparer à l’équation de la trajectoire expérimentale.
Le modèle mathématique est-il valide ?
• Répondre à la problématique.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !