Second degré : équations , inéquations , forme canonique , forme

Second degré : équations , inéquations , forme canonique , forme factorisée , tableau de
variation , parabole .
A) Résoudre les inéquations suivantes ( on utilisera un tableau de signes en le justifiant avec les
règles du cours ).
1)
(3 x+2)(4x)0
2)
x27 x+60
3)
2 x2+9 x+80
4)
3(x+4)2+2>0
5)
(x3)24>0
B) On donne sur l'intervalle I= [-1 ;8] les fonctions f et g définies pour tout
x
par :
f(x)=x26 x7
et
g(x)=3,4 x18,2
.
1) a) Dresser en le justifiant le tableau de variation de la fonction f sur I(utiliser la forme
canonique de f(x)) .
b) Faire le tableau de valeurs de f(x) avec un pas de 0,5 et une précision de 0,1 .( le faire à
la calculatrice puis le reproduire) .
c) Construire la courbe de f dans un repère orthonormé d'unité 1 cm .( placer tous les points
de votre tableau pour avoir un maximum de précision).
d) Etudier le signe de f(x) sur I et résoudre l'inéquation
f(x)0
.
2) a) Tracer la courbe de la fonction g puis résoudre graphiquement l'inéquation
.
b) Résoudre algébriquement l'inéquation
.( se ramener à résoudre
g(x)f(x)0
à l'aide d'un tableau de signes)
c) Sur quel intervalle la droite d'équation
y=3,4 x18,2
est-elle au-dessus de la
parabole d'équation
y=x26 x7
? (penser à utiliser le résultat de la question 2)b)).
Refaire également les exercices fait en cours sur tableau de signes et inéquations
probabilités et variables aléatoires
Question de cours à réviser : linéarité de l'espérance d'une variable aléatoire
Probabilité avec un tableau d'effectifs à compléter
Parmi les 680 adhérents d'un club , une enquête a donné les résultats suivants :
20% des adhérents font de la marche et de la course à pied ; 286 font de la course à pied .
Ceux qui ne font pas de course à pied et font de la marche sont deux fois plus nombreux que ceux
qui font de la marche et de la course à pied .
1) Compléter le tableau d'effectif suivant suivant :
course(C) Pas course(
̄
C
) total
marche(M)
Pas marche(
̄
M
)
total 680
2) Dans le fichier des adhérents du club , on choisit au hasard un adhérent ; Déterminer la
probabilité de chacun des événements suivants :
M : " l'adhérent est un marcheur " .
MC
: " l'adhérent est un marcheur et il pratique la course à pied" .
̄
C
: " l'adhérent ne pratique pas la course à pied " ;
MC
: " l'adhérent pratique la marche à pied ou la course à pied" .
Probabilité avec un arbre de 2 tirages successifs sans remise
Un sac contient 10 jetons de dominos ( 3 "doubles" et 7 "non doubles" ).
On tire au hasard un domino ,on le pose sur la table puis on tire un deuxième domino du sac
.Faire un arbre pondéré .
Quelle est la probabilité d'obtenir 2 "doubles" ?
Quelle est la probabilité d'obtenir un "double" puis un "non double"?
Quelle est la probabilité d'obtenir un "double" et un "non double"?
Utilisation des formules des variables aléatoires
Une variable aléatoire X est donnée par la loi suivante :
xi
14578
P(X=xi)
1
25
4
25
1
5
7
25
Déterminer P(X=8) ; en déduire E(X) , V(X) et
σ(X)
.
Soit la loi Y définie par Y= 4 X -3 ; déterminer E(Y) , V(Y) et
σ(Y)
.
Revoir également les exercices 23 , 26 ,63 ,64, et 65 page 215 et 222 .
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !