˜g(−2a−1) = −−2a−1+1
2=a a >0 ˜g(h(a)) = ˜g(2a) = 2a
2= 1 ˜g◦h=IdZ
n∈Nn h(˜g(n)) = h(n/2) = 2n
2=n n h(˜g(n)) =
h(−n+1
2) = −2(−n+1
2)−1 = n h ◦˜g=IdNh= ˜g−1
R2
A={(x, y)∈R2|06x63 0 6y66−2x}et B={(1+cos(θ),1+sin(θ)) ; θ∈[0,2π]}.
A B
A(0,0),(3,0) (0,6) B
(1,1)
B⊂A
(x, y)B(x, y) = (1 + cos θ, 1 + sin θ)
θ∈[0,2π] cos θ>−1 sin θ>−1x>0y>0 cos θ61
sin θ61 2x+y62(1 + 1) + (1 + 1) = 6 y66−2x(x, y)
A(x, y)∈A B ⊂A
C
C={(x, y)|06x62 2 + x
26y63}.
C A B C
C A C
A(x, y) = (2,3) 0 6x62 2 + x
26y63 (x, y)∈C
6−2x= 2 < y (x, y)/∈A
B C (x, y)C(0,2) y > 2
(x, y)B(1,2) y < 2
B C
y
123x
1
2
3
4
5
6