Cours de Mathématiques
Sup MPSI PCSI PTSI TSI
En partenariat avec l’association Sésamath http://www.sesamath.net
et le site http://www.les-mathematiques.net
Document en cours de relecture (fin des relectures, décembre 2010)
Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron
5 novembre 2010
Présentation du livre
Le livre, dont vous trouverez ici un extrait, est un cours complet de mathématiques pour la première
année des classes préparatoires scientifiques. il est agrémenté de 1531 exercices corrigés, de 4 cha-
pitres de méthodes et d’un aide-mémoire.
Il se caractérise par les points suivants :
Nous nous sommes efforcés de rester très proches des consignes du programme officiel et de suivre
sa progression.
Nous avons beaucoup travaillé sur la présentation du livre et nous espérons qu’il sera agréable à
utiliser. Afin d’agrémenter sa lecture et pour rendre les mathématiques plus vivantes, nous avons
accompagné le cours des biographies des différents mathématiciens rencontrés pendant l’année de
sup.
Les exercices qui accompagnent chaque chapitre sont en quantité importante et de niveaux variés.
Nous n’avons pas hésité à concevoir de nombreux exercices basiques afin que les étudiants les plus
faibles puissent affermir leurs bases. Des exercices qui demandent plus de réflexions et d’initiatives
sont prévus à l’intention des étudiants plus avancés. La difficulté de chaque exercice est indiquée.
Nous avons utilisé un codage pour signaler les propositions et les preuves les plus importantes
du cours. Nous espérons que cela aidera les étudiants, dans une première lecture, à distinguer les
parties principales des parties plus secondaires.
Le livre est terminé par 4 annexes qui recensent les techniques les plus usuelles qu’un étudiant
doit acquérir au cours de son année de sup. Ces annexes peuvent être utilisées pendant l’année
mais aussi pour réviser avant d’entrer en deuxième année. Les méthodes et techniques qui y sont
consignées sont expliquées en détail et illustrées.
Le livre est actuellement l’objet d’une relecture collaborative sur le site les-mathematiques.net.
Le livre sera disponible sur internet sous une licence libre. Les internautes pourront en particulier le
télécharger gratuitement au format pdf ou le consulter via des pages web. Une version papier sera
commercialisée en parallèle à un prix attractif.
Une version de travail est consultable à cette adresse : http ://les.mathematiques.free.fr/livre/livre.pdf.
François Capaces
Alain Soyeur
Emmanuel Vieillard-Baron
1
Table des matières
1 Nombres complexes 18
1.1 Le corps Cdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2 Construction de C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.3 Propriétés des opérations sur C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.1 Partie réelle, partie imaginaire d’un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Représentation géométrique des complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Représentation d’Argand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Interprétation géométrique de quelques opérations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Module d’un nombre complexe, inégalités triangulaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Nombres complexes de module 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1 Groupe Udes nombres complexes de module 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Argument, fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.1 Argument d’un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7 Racines n-ièmes de l’unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.9 Nombres complexes et géométrie plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.10 Transformations remarquables du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.11.2 Polynômes, équations, racines de l’unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.11.4 Application des nombres complexes à la géométrie . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Géométrie élémentaire du plan 61
2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.2 Produit d’un vecteur et d’un réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2
Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Équation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.2 Interprétation en terme de projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.4 Interprétation en termes de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.2 Interprétation en terme d’aire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.4 Interprétation en terme de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.5 Application du déterminant : résolution d’un système linéaire de Cramer de deux équations à deux
inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.2 Lignes de niveau de M7→~
u.
AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.3 Lignes de niveau de M7→det³~
u,
AM´. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.4 Représentation paramétrique d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.5 Équation cartésienne d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.5.6 Droite définie par deux points distincts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5.7 Droite définie par un point et un vecteur normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5.8 Distance d’un point à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5.9 Équation normale d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.10 Équation polaire d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.5.11 Intersection de deux droites, droites parallèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.6.2 Équation cartésienne d’un cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.6.3 Représentation paramétrique d’un cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6.4 Équation polaire d’un cercle passant par l’origine d’un repère . . . . . . . . . . . . . . . . . . . . . 82
2.6.5 Caractérisation d’un cercle par l’équation
MA.
MB =0. . . . . . . . . . . . . . . . . . . . . . . . . 82
2.6.6 Intersection d’un cercle et d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3 Géométrie élémentaire de l’espace 112
3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.1.1 Combinaisons linéaires de vecteurs, droites et plans dans l’espace . . . . . . . . . . . . . . . . . . 112
3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1.3 Orientation de l’espace, base orthonormale directe . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.2 Mode de repérage dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Norme d’un vecteur, distance entre deux points dans un repère orthonormé . . . . . . . . . . . . . 116
3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.4.2 Interprétation géométrique du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3
3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Quelques exemples d’applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 122
3.4.4 Expression dans une base orthonormale directe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.2 Expression dans une base orthonormale directe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.6 Plans dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.6.1 Représentation paramétrique des plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Interprétation géométrique de l’équation normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.6.3 Distance d’un point à un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Deux méthodes de calcul de la distance d’un point à un plan . . . . . . . . . . . . . . . . . . . . . 129
3.7 Droites dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.7.3 Distance d’un point à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.9.2 Coordonnées cartésiennes dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4 Fonctions usuelles 150
4.1 Fonctions logarithmes, exponentielles et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.1.4 Exponentielle de base a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 158
4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2.1 Rappels succincts sur les fonctions trigonométriques . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.3 Fonctions hyperboliques inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Fonction argument sinus hyperbolique argsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Fonction Argument cosinus hyperbolique argch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Fonction Argument tangente hyperbolique argth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4
1 / 130 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !