1-La variable X suit la loi normale N( 12 ; 4 ). Calculer les probabilités suivantes :
P ( X ≤ 15 ) ; P ( X ≥ 18 ) ; P ( X ≥ 7 ) ; P ( X ≤ 9 ) ; P(8 ≤ X ≤ 17 ).
Solution :
P ( X ≤ 15 ) = P ( z 0,75 ) = 0,77
P ( X ≥ 18 ) = P ( z ≥ 1,5 ) = 0,067
P ( X ≥ 7 ) = P ( z - 1,25 ) = 0,89
P ( X ≤ 9 ) = P ( z - 0,75 ) = 0,23.
P ( 8 ≤ X ≤ 17 ) = P ( -1 ≤ z ≤ 1,25 ) = 0,74.
2-Une machine produit des rondelles métalliques en grande série. Une rondelle est acceptée si
son diamètre extérieur est compris entre 21,9 et 22,1 mm. On suppose que sur l'ensemble de
la production le diamètre extérieur des rondelles suit la loi normale de moyenne µ =22 mm et
d'écart type = 0,05 mm. Quelle est la probabilité qu'une pièce soit refusée ?
Solution :
P ( 21,9 ≤ X ≤ 22,1 ) = P ( -2 ≤ z ≤ 2 ) = 0,95
Probabilité qu'une pièce soit refusée = 1 - 0,95 = 0,05.
3-Le nombre de clients d'un magasin suit chaque samedi une loi normale de moyenne 350 et
d'écart type 30.
Quelle est la probabilité pour qu'il y ait un samedi donné, :
- plus de 400 clients ?
- moins de 300 clients ?
- un nombre de clients compris entre 320 et 380 ?
Solution :
P ( X ≥ 400 ) = P (z ≥ 1,67 ) = 0,0475.
P ( X ≤ 300 ) = P (z ≤ - 1,67 ) = 0,0475.
P ( 320 ≤ X ≤ 380 ) = P ( -1 ≤ z ≤ 1 ) = 0,6826.
1-Une communauté souhaite limiter la longueur des conversations téléphoniques. Elle décide
d'envoyer un signal aux 15% des appels les plus longs. On cherche la durée après laquelle un signal
doit être envoyé.
Une étude montre que la durée d'appel suit approximativement une loi normale de moyenne µ=8'30''
et d'écart-type =2'15''.
1) Déterminer les intervalles de centre µ qui contiennent 99%, 95% et 68% des appels.
2) Après quelle durée de conversation faut-il envoyer le signal ?
2-Lors de la fabrication d'un lot de fromages de chèvres, on a relevé la masse des fromages
fabriqués :
masse (en g)
[80;85[
[85;90[
[90;95[
[95;100[
[100;105[
[105;110[
[110;115[
effectifs
5
9
14
18
25
16
7
Dans une production de ce type, tous les fromages ne sont pas commercialisés.
Les fromages dont la masse est comprise dans l’intervalle [¯;x ; ¯;x + ] sont commercialisés au
prix courant.
Les fromages dont la masse est comprise au-delà de l’intervalle [¯;x 2 ; ¯;x + 2] ne sont pas
commercialisés.
Les autres fromages sont commercialisés au rabais.
1) Peut-on déterminer le nombre de fromages qui seront commercialisés au prix courant ?
Peut-on donner un encadrement de ce nombre ?
2) Donner un encadrement du nombre de fromages non commercialisés ?
3) Donner un encadrement du nombre de fromages commercialisés au rabais.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !