Mécanique des fluides. Chapitre 1.
Exercices.
Sauf indications précises, on prendra pour tous les exercices : pression atmosphérique 105 Pa,
masse volumique de l’eau 103 kg.m-3, constante de pesanteur g = 10 N.kg-1 (m.s-2).
Avant toute application numérique, on s’attachera à établir une expression littérale de la
grandeur à calculer.
Exercices divers.
1. Une surface rectangulaire de 2 m de largeur et de 3 m de longueur est soumise à une pression
uniforme de 30 Pa. Quelle est la force qui agit sur cette surface ?
2. Un tube cylindrique vertical de 100 cm2 de section contient 2 L d'eau.
2.1. Calculer la pression effective peff en un point du fond du tube. En déduire la pression
absolue pabs.
2.2. On place sur cette eau un piston de masse 2 kg. Calculer la nouvelle pression effective.
En déduire la force pressante sur le fond. Représenter cette force.
3. On plaque à une extrémité d'un tube cylindrique une plaque d'acier de
section 10 cm2 et de masse 30 g. On plonge le tout dans de l'eau.
3.1. Faire un bilan des forces appliquées à la plaque.
3.2. A quelle profondeur minimale faut-il placer l'extrémité inférieure
pour que la plaque reste contre l'embouchure du tube ?
3.2. Quelle hauteur d'eau faut-il verser dans le tube pour que la plaque se décolle lorsqu’elle
se trouve à 10 cm de profondeur ?
4. Le dispositif ci-contre représente une cuve
parallélépipédique ouverte sur un tuyau vertical. L’ensemble
est rempli d’eau jusqu’au point L.
4.1. Déterminer la résultante des forces de pression sur le
panneau CDFH.
4.2. Calculer la résultante des forces de pression exercées
sur l’ensemble des parois.
5. Dans la cuve d'un carburateur, le niveau de carburant est maintenu constant grâce à l'action
d'un pointeau solidaire d'un flotteur cylindrique. La masse du flotteur est de 15 g, son diamètre
est 5 cm, la masse volumique de l'essence est 710 kg.m-3.
5.1. Faire un schéma du flotteur avec bilan de forces.
5.2. Calculer la hauteur de la partie immergée du flotteur.
BTS Bâtiment 1997. Étude d’un cuvelage.
Pour protéger un parking souterrain contre les eaux de la nappe phréatique, on a fabriqué un
cuvelage en béton dont les dimensions extérieures sont :
hauteur H = 4,75 m largeur l = 12,5 m longueur L = 40 m
L'épaisseur du fond et des 4 parois verticales, en béton, est constante et égale à e = 0,30 m.
Données. masse volumique du béton : b = 2200 kg.m-3, masse volumique de l'eau : e = 1000
kg.m-3, accélération de la pesanteur . g = 10 m.s-2.
1. Exprimer littéralement puis calculer la masse du cuvelage.
2. Le cuvelage est immergé dans une hauteur d'eau h = 2,10 m. Calculer l'intensité de la force
pressante f, exercée par l'eau de la nappe phréatique sur chacune des parois verticales et sur le
fond du cuvelage.
3. a. Calculer la poussée d' Archimède que subit le cuvelage.
b. Montrer que pour rester immergé dans la hauteur h d'eau, celui-ci doit être ancré dans le
sol.
c. Calculer l'intensité, T, de la force totale exercée par les tirants sur le cuvelage.
BTS Bâtiment 1992. Étude d’un vérin hydraulique.
1. Un vérin hydraulique est constitué de deux
cylindres verticaux, remplis d'un liquide
incompressible, qui communiquent à leur partie
inférieure par un tube de faible diamètre.
Le piston d'entrée de diamètre d = 4 cm et le piston
de sortie de diamètre D = 40 cm sont posés sur les
deux surfaces libres.
Le piston d'entrée peut être enfoncé par un levier,
dont le rapport des bras
OC
OE
est de 5.
On exerce à l'extrémité du levier une force
F
d'intensité F = 40 N.
Quelle est l'intensité P du poids
P
pouvant être
soulevé par le vérin ?
2. Une masse M est placée sur le piston B du vérin précédent. Le piston A est maintenant
actionné par une vis sans fin de pas p = 1,6 mm (le piston se déplace verticalement de 1,6 mm
pour chaque tour de vis). On souhaite soulever la masse M d'une hauteur hB = 5 mm.
2.a. De quelle hauteur hA doit se déplacer le piston d'entrée ?
2.b. En déduire le nombre de tours de vis nécessaires.
Extrait de BTS Bâtiment 1998. Forces pressantes s’exerçant sur la porte d’un bassin.
Un bassin contenant de l'eau sur une profondeur h = 9 m, est fermé par une porte verticale
constituée de trois panneaux plans
superposés de hauteurs AB, BC et CD et de
même largeur a = 2 m.
1. Calculer la résultante F des forces de
pression s'exerçant sur l'ensemble de la
porte.
2. Exprimer littéralement la pression due à
l'eau aux points M, N, P se trouvant à mi-
hauteur respectivement des panneaux AB,
BC, CD.
3. Déduire des questions précédentes la
hauteur de chaque panneau pour que chacun supporte le même effort.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !