Contrôle n°1 (Test de rentrée) sept15
Classe : 2nde 6
Exercice 1 : (5 pts)
Cet exercice est un questionnaire à choix multiples (QCM).
Pour chaque question, une seule des réponses proposées est exacte. Laquelle ? L'entourer.
Réponse A Réponse B Réponse C
1/
2+2
3×1
4
=
2+2×1
3×4=2+1
6=12
6+1
6=13
6
A
13
6
4
12
2
3
2/
50
=
25×2=5
2
A
5
2
25
2
2
25
3/ L'écriture scientifique de 65 100 000 est
6,51×107
A (
avec
a
un décimal
ayant un seul chiffre non nul avant la virgule
et
p
entier)
6,51×107
651×105
65,1×106
4/ L'opposé de 4 est –4 A –4 0,25 2
5/ Si
x=3
alors
x2+2x+1
=
(−3)2+2×(−3)+1=96+1=14
A –14 4 15
6/ La forme développée de
(3x+5)2
est C
(a+b)2=(a+b)(a+b)=a2+2×a×b+b2
et ici
a=3x
et
b=5
9x2+15 x+25
9x2+25
9x2+30 x+25
7/ La forme factorisée de
16 x249
est B
16 x249=(4x)2−(7)2
et
a2b2=(ab)(a+b)
(4x7)2
(4x7)(4x+7)
(16 x+7)(16 x7)
8/ Les solutions de l'inéquation
2x+57
sont les réels
x
tels que
x1
A (-2 est
solution)
x1
x1
x1
9/ La médiane de la série 1; 2; 2,4; 3; 3,5; 3,7;
3,8; 4 ; 4,2 ; 4,2 ; 7 est 3,7 3,5 3,7 4,2
10/ Un bidon contient 25 L. Si j'augmente de
2% sa contenance, alors j'obtiens 25,5 B
(attention les valeurs ne sont pas ordonnées)
27 L 25,5 L 25,02 L
Exercice 2 : (2,5 pts)
Soit f la fonction définie par f (x) = 5x – 3
Compléter le tableau suivant :
x–2 –1 0 2 7
f (x)–13 –8 –3 7 32
Compléter les phrases suivantes en utilisant les
mots « image » ou « antécédent » :
* L'image de –2 par f est –13.
* 32 est l'image de 7 par la fonction f.
* –3 est l'image de 0 par la fonction f.
Exercice 3: (2,5 pts)
Résoudre les équations et inéquations suivantes :
a)
5x=7
x =
7
5
x = 1,4
S = { 1,4 }
b)
2x+7=5x9
7 + 9 = 5x – 2x
16 = 3x
x =
16
3
S = {
16
3
}
c)
4x+3>2
4x > –1
x >
1
4
S = ]
1
4
; + [
A
B
C
D
E
6 cm 2 cm
Exercice 4 : (3,5 pts)
On considère le programme de
calcul ci-dessous :
1/ Lorsque le nombre de départ est 3, quel résultat obtient-on ?
3 × (–2) = –6 ; –6 + 5 = –1 ; –1 × 5 = –5.
2/ Quel nombre faut-il choisir au départ pour que le résultat obtenu
soit 0 ? Pour cela, partons de zéro et reprenons les opérations dans
l'ordre inverse :
0 ÷ 5 = 0 ; 0 5 = –5 ; –5 ÷ (–2) = 2,5. Il faut donc choisir 2,5 au
départ pour obtenir 0 comme résultat.
3/ Arthur prétend que, pour n’importe quel nombre de départ
x
,
l’expression
(x −5)2− x2
permet d’obtenir le résultat du
programme de calcul. A-t-il raison? Justifier .
Ce programme de calcul revient à effectuer (–2x + 5)×5 = –10x + 25.
De plus (x − 5)2x2 = x2 – 10x + 25 – x2 = –10x + 25.
Ces deux expressions sont donc égales, Arthur a donc raison.
Exercice 5 : (2,5 pts)
1/ Soit
f
la fonction affine représentée ci-contre.
Compléter :
a/ L'image de 4 par
f
est 1
L'image de 0 par
f
est -1
b/ L'antécédent de 0 par
f
est 6
2/ Dans le repère ci-contre, construire la représentation
graphique de la fonction affine
g
définie par
g(x)=2x+5
.
3/ Donner, par son expression, un exemple de fonction linéaire.
h(x)=3x
Exercice 6 : (4 pts)
Le dessin ci-contre représente une figure géométrique dans laquelle on sait que :
• ABC est un triangle rectangle en B.
• CED est un triangle rectangle en E.
• Les points A, C et E sont alignés.
• Les points D, C et B sont alignés.
• AB = CB = 2 cm.
• CD = 6 cm. Le dessin n’est pas en vraie grandeur
1. a. Déterminer la mesure de l’angle
̂
ACB
. ACB est un triangle rectangle isocèle en B, on a donc
̂
ACB
= 45°.
b. En déduire la mesure de l’angle
̂
DCE
.
^
ACB
et
̂
DCE
sont opposés par le sommet, ils sont
donc égaux et on a
̂
DCE
= 45°.
2. Déterminer une valeur approchée de DE à 0,1 cm près.
Dans le triangle DCE, rectangle en E, on a
sin 45=DE
DC
donc sin 45° =
DE
6
donc DE = 6 sin 45° 4,2 cm
3. Où se situe le centre du cercle circonscrit au triangle DCE? (Justifier, sans construction)
Comme DCE est un triangle rectangle, le centre de son cercle circonscrit (point de concours des
médiatrices) est le milieu de l'hypoténuse (c'est-à-dire [DC]).
choisir un nombre de départ
• multiplier ce nombre par (− 2)
• ajouter 5 au produit
• multiplier le résultat par 5
• écrire le résultat obtenu.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !