La loi normale.
Identification d'une distribution normale.
On
dit qu'une série statistique suit une loi normale lorsque
sa
fonction de distribution a une forme
en
cloche centrée sur la moyenne.
(m
sur
la
figure ci-dessous).
La
loi normale permet de calculer les probabilités p(X <x) d'une variable continue.
Loi
Normale
m
Exemple: On a relevé le poids des enfants d'une même classe d'âge (variable x).
On
représente les
valeurs de cette variable par un diagramme en bâtons(
en
prenant les centres des classes):
!POIds
!centre
de
la
classe Effectif
25-26[ i 25,5 3
1[26-27[
26,5
1[27-28[
27,5 18
1[28-29[
28,5 401
![29-30[
87
[30-31 [ 29,5
30,5
98
1[31-32[
87
[32-33[
~
43
21
1[34-35[
33,5
i[33-34[ 34,5 6
1[35-36
[ 35,5 2
120
100
80
60
40
20
o
~
~ ~ ~
~
~ ~
~ ~
~ ~
~~
<.o~
"'~
<:o~
O')~
c:r
"""
C'\I~
(lt'f
~~
~~
C'\I C'\I
C'\I
C'\I
C'\I
~ ~ ~
~
~
~
La
distribution "Poids des enfants" peut être qualifiée de normale.
Caractéristiques
d'une
distribution normale
Les trois caractéristiques de tendance (moyenne, mode et médiane) sont sensiblement égales.
Sensiblement 68% des observations sont comprises dans l'intervalle m+/-
0"
.
Sensiblement 95% des observations sont comprises dans l'intervalle
m+/-20"
.
Retour à l'exemple:
Les calculs montrent que:
La moyenne m est égale à 30,505.
La médiane est égale à 30,5.
Le mode (centre de la classe modale) est égal à 30,5.
La variance est égale à 2,94, donc
0"
= 1,715.
L'intervalle m+/-
0",
c'est à dire [28,79; 32,22] contient 69,48% des observations.
L'intervalle
m+/-20",
c'est à dire [27,07; 33,94] contient 94,87% des observations.
Toutes les conditions requises pour supposer une distribution normale sont vérifiées.
Paramètres
de la loi normale
La moyenne ( espérance) et l'écart type calculés sur la série statistique constituent les paramètres de
la loi normale:
X----tt-
N(m;
0"
).
Soit la variable X de l'exemple précédent: X
----tt-
N(30,505 ; 1,715).
Calculs de probabilités
par
la loi normale
La
loi normale centrée réduite
Une variable dont la distribution satisfait aux critères de normalité, est réputée suivre une loi
normale de paramètres m et
(J
(caractéristiques calculées sur la série statistique).
Une variable suit une loi normale centrée réduite si sa moyenne est égale à 0
et
son écart type à
1.
Si
X
suit
une
loi
normale
de
paramètres
m
et
0'
alors
la
variable
T=
X-m
suit
une
loi
normale
(J
centrée réduite. Ainsi p(X<x)=p(T<t).
L'intérêt d'un tel changement de variable est qu'il existe des tables de la loi normale centrée réduite.
(cf
annexe).
Exemple: Le kilométrage moyen annuel réalisé par les conducteurs de véhicule essence suit une loi
normale de moyenne 15000 et d'écart type 6000. Soit X la variable aléatoire représentant le nombre
de kilomètres parcourus par un véhicule.
X----iI>
N(15000,6000).
T
X~l;oOoOO
et
T----iI>N(O,l)
On
cherche la probabilité qu'un véhicule parcourt moins de 25000
km
par an.
25000-15000
p(X<25000)=p(T< 6000 )=p(T<I,67).
Par lecture de la table
de
la loi normale centrée réduite: peT <1,67)=0,9525.
Propriétés
1
p(T>t)=l-
p(T<t) p(T< -t)=p(T> t)
Applications:
1.
La durée de fonctionnement sans panne d'un type de machine est en moyenne de 950
heures avec un écart type de 100 heures.
X=durée de fonctionnement.
x-+
N(950;100) et T
----il>N(O;I)
.
Quelle est la probabilité pour que la première panne survienne, sur l'une des machines,
après plus de 1000 heures
de
fonctionnement?
Quelle est la probabilité pour que la première panne survienne avant 850 heures de
fonctionnement.
Quelle est la probabilité pour que la première panne survienne entre 900 et 1000 heures
de fonctionnement.
2. Le poids X en grammes d'un cèpe suit une loi normale N(60;3).
Calculer
p(57<X~61)
3.
On
sait que X suit une loi normale de paramètres m et
(J
. En sachant que
p(X~0,5)=0,5517
et
P(X~2,6)=0,9515,
déterminer m et
(J,
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !