1/
Probabilités
1) Variable aléatoire : loi de probabilité et espérance
11) Variable aléatoire discrète :
Définition :
On considère l’ensemble des issues (Univers ) d’une expérience aléatoire.
Définir une variable aléatoire X sur cet ensemble, c’est
Cette variable aléatoire est discrète lorsqu’
x1, x2, …, xi, …, xn où xi est la ième valeur possible.
L’ensemble des issues auxquelles on associe la même valeur xi de la variable aléatoire X est
Exemple : dé à 6 faces, -1 si impair et +1 si pair : aux issues { ; ; } on associe l’évènement
D’où la notation : , de même :
12) Loi de probabilité :
Définition :
Définir une loi de probabilité P d’une variable X, c’est
Ainsi, pi = avec pi et
Déterminer la loi de probabilité de X, c’est
Exemple : avec le dé précédent
13) Espérance d’une variable aléatoire :
Définition :
L’espérance d’une variable aléatoire X est
E(X) =
Exemple : avec le dé précédent E(X) =