Lois à densité
Notion de base :
Le passage des lois « discrètes » aux lois à densité se fait en passant :
de la liste des valeurs
xi
de X à un intervalle de valeurs continu
[a ;b]
{
x1, x2... , xn
} →
[a ;b]
de la probabilité
pi
associée à chaque valeur
xi
à une densité de probabilité
f(x)
.
{
p1, p2... , pn
} →
f(t)
densité de probabilité
Propriétés et définitions :
1. Pour une variable aléatoire de densité de probabilité
f(t)
définie sur
I=[a ; b ]
:
a
b
f(t)dt=1
2. Pour un intervalle
,
P(cXd)=
c
d
f(t)dt
Rem :
P(X=c)=P(cXc)=
c
c
f(t)dt=0
3. Espérance de X (ou valeur moyenne) :
E(X)=
a
b
t.f(t)dt
Lois à densité à connaître :
1. Loi uniforme :
Sur
I=[a ; b ]
f(t)= 1
ba
en dehors de I :
f(t)=0
Pour un intervalle
:
P(cXd)=
c
d
f(t)dt=dc
ba
Espérance mathématique :
E(X)= a+b
2
Ubicours – Fiches mémo Lois à Densité
2. Loi exponentielle :
Si
t0
f(t)=λeλ t
Si
t<0
:
f(t)=0
E(X)= 1
λ
P(Xt)=1eλ t
Propriété :
PXt(Xt+h)=P(Xh)
, c'est une loi « sans vieillissement ».
3. Loi normale centrée réduite N (0;1) :
Densité de probabilité :
f(t)= 1
2πe1
2t2
4. Loi normale de moyenne μ et de variance σ 2
N ( μ ; σ 2
) :
Densité de probabilité :
f(t)= 1
σ
2πe
1
2
(
tμ
σ
)
2
Si X suit la loi normale N( μ ;σ2 ) alors
Z=X−μ
σ
suit la loi N(0;1).
Théorème de Moivre-Laplace :
Rappel : pour la loi binomiale, la moyenne est E(X) = np et la variance V(X) = np(1-p).
Th. : Si Xn suit la loi binomiale B( n;p ) alors
Zn=Xnnp
np(1p)
converge en loi vers N(0;1).
On peut ainsi utiliser la loi normale de même espérance E(X) et variance V(X) comme
approximation de la loi binomiale lorsque n est « grand » et p ni « trop voisin » de 0 ni « trop
voisin » de 1 c'est-à-dire np et n(1-p) > 15 ou 20.)
Ubicours – Fiches mémo Lois à Densité
Intervalle de fluctuation
Principe :
On répète n fois une expérience de Bernouilly et on note k le nombre de succès.
Si on reproduit ce schéma plusieurs fois la valeur de k fluctue.
Définition de la fréquence de succès : Fn = k/n.
Utilisation : la probabilité p de succès est connue ou supposée et on détermine l'intervalle de
fluctuation tel que que la fréquence observée sur un échantillon soit dans cet intervalle avec une
probabilité donnée.
On calcule l'intervalle de fluctuation de la façon suivante :
Si Xn suit la loi binomiale B( n;p ) alors
In=[ puα
p(1p)
n; p+uα
p(1p)
n]
uα est issu de N(0;1) tel que
P(uαXuα)=1α
(ex : uα = 1,96 pour 1- α = 0,95)
Conditions d'application de l'estimation :
n30 , np5, n (1p)5
La fréquence observée se trouve dans cet intervalle avec une probabilité 1- α.
Intervalle de confiance
Principe : c'est la démarche inverse de celle de l'intervalle de fluctuation. On mesure la fréquence de
succès dans un échantillon de taille n pour une variable aléatoire Xn qui suit la loi binomiale B(n;p)
et on en déduit l'intervalle de p au seuil de 95%.
Jn=[ Fn1
n; Fn+1
n]
Conditions d'application de l'estimation :
n30 , np5,n(1p)5
Ubicours – Fiches mémo Lois à Densité
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !