2014 2015
,T, P ) (A, B) T 2d(A, B) = P(AB)
(A, B, C) T 3, d(A, C)d(A, B) + d(B, C)
(A, B) T 2,|P(A)P(B)| ≤ d(A, B)
(X, Y ) T 2, XY= (XY)(XY)XY X Y
d(X, Y ) = P(XY) = P(XY) + P(XY)
d(A, C) = P(AC) + P(AC) = P(ACB) + P(ACB) + P(A
CB) + P(ACB)
P(ACB)P(CB)P(ACB)P(AB)
P(ACB)P(AB)P(ACB)P(CB)
d(A, C)P(CB) + P(AB) + P(AB) + P(CB)
P(CB) + P(AB) + P(AB) + P(CB) = P[(AB)(AB)] +
P[(CB)(CB)]
=P(AB) + P(BC) = d(A, B) + d(B, C)
d(A, C)d(A, B) + d(B, C)
C=d(A, )d(A, B) + d(, B)
X T , d(X, ) = P(X) = P(X)
P(A)d(A, B) + P(B)
A B P (B)d(A, B) + P(A)
|P(A)P(B)| ≤ d(A, B)
2014 2015
k[[1,52]] Akk
P(Ak)
52
k=1
P(Ak)
k[[1,52]] Bkk
P(Bk)
52
k=1
P(Bk)
Ω 52! C
Ak
C\ { }
(Ak) = 51! P(Ak) = (Ak)
(Ω) =1
52
k
52
k=1
P(Ak) = 1
Ak, k [[1,52]]
B1=B2=
k3
k
k1
k1k2
k2k1 49!
(Bk) = (k1) ×(k2) ×49!
P(Bk) = (Bk)
(Ω) =(k1)(k2)
52 ×51 ×50
52
k=1
P(Bk) =
52
k=3
P(Bk) =
52
k=3
(k1)(k2)
52 ×51 ×50 =
50
p=1
p(p+ 1)
52 ×51 ×50 =
50
p=1
p2+
50
p=1
p
52 ×51 ×50
2014 2015
=1
52 ×51 ×5050 ×51 ×101
6+50 ×51
2=1
52101
6+1
2=1
3
Bk, k [[1,52]]
D
3! = 6
P(D) = 1
3
2
a, b c Q(X) = aX2+bX +c
Q Q
Q
Ω = [[1,6]]3
(Ω) = 63= 216 A∈ P(Ω)
A(A)
216
S Q {(a, b, c)/ b24ac > 0}
D Q {(a, b, c)/ b24ac = 0}
C Q {(a, b, c)
/b24ac < 0}S, D, C
4ac 6b
s(b), d(b), γ(b)
(a, c)b2>4ac b2= 4ac b2<4ac
a/c 1 2 3 4 5 6
1 4 8 12 16 20 24
2 8 16 24 32 40 48
3 12 24 36 48 60 72
4 16 32 48 64 80 96
5 20 40 60 80 100 120
6 24 48 72 96 120 144
γ(b) = 36 s(b)d(b)
2014 2015
b b2s(b)d(b)γ(b)
1 1 0 0 36
2 4 0 1 35
3 9 3 0 33
4 16 5 3 28
5 25 14 0 22
6 36 16 1 19
(S) = 0 + 0 + 3 + 5 + 14 + 16 = 38 (D) = 0 + 1 + 0 + 3 + 1 = 5
(C) = 173
P(S) = 38
216 =19
108 P(D) = 5
216 P(C) = 173
216
P(C)
γ(b) (S, D, C)
P(C) = 1 P(S)P(D)
0,1,2, . . . , n k
E E
k a
E k E
k+ 1 b
0E
pnE n
k[[0, n]] AkE k
p0=P(A0) = 1
2
k P (Ak+1/Ak) = a P (Ak+1/Ak) = b
P(Ak+1/Ak) = 1 b
P(Ak+1) = P(Ak+1/Ak)P(Ak) +
P(Ak+1/Ak)P(Ak)
P(Ak+1) = aP (Ak)+(1b)(1P(Ak)) pk+1 = (a+b1)pk+1b
x= (a+b1)x+ 1 bx=1b
2ab
pk+1 1b
2ab= (a+b1)pk1b
2ab
k[[0, n 1]]
k[[0, n]], pk=1b
2ab+ (a+b1)kp01b
2ab=1b
2ab+
(a+b1)kba
2(2 ab)
pn=1b
2ab+ (a+b1)nba
2(2 ab)
2014 2015
b r n
n
k[[1, n]]
Bkk
Vkk
Vk=Bkn
i=1,i̸=kBi=B1∩ ··· ∩ Bk1BkBk+1 ∩ ··· ∩ Bn
A=n
i=1 Vi
Vi
A
P(A) =
n
k=1
P(Vk)
k[[1, n]] P(Vk) = P(k1
i=1 Bi)Bk(n
j=k+1 Bj
Uk= (k1
i=1 Bi)Bk
P(Vk) = P(B1)P(B2/B1)···P(Bk1/k2
j=1 Bj)P(Bk/k1
i=1 Bi)P(Bk+1/Uk)···P(Bn/Uk
n1
j=k+1 Bj)
k1
b k
P(B1) = P(B2/B1) = ··· =P(Bk1/k2
j=1 Bj) = r
b+r
P(Bk/k1
i=1 Bi) = b
b+r
k b 1
r
P(Bk+1/Uk) = P(Bk+1/UkBk) = ··· =P(Bn/Ukn1
j=k+1 Bj) =
r
b+r1
P(Vk) = r
b+rk1b
b+rr
b+r1nk
=rn1b
(b+r)k(b+r1)nk
1 / 15 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !