2014 −2015
Ω,T, P ) (A, B)∈ T 2d(A, B) = P(A∆B)
∀(A, B, C)∈ T 3, d(A, C)≤d(A, B) + d(B, C)
∀(A, B)∈ T 2,|P(A)−P(B)| ≤ d(A, B)
(X, Y )∈ T 2, X∆Y= (X∩Y)∪(X∩Y)X∩Y X ∩Y
d(X, Y ) = P(X∆Y) = P(X∩Y) + P(X∩Y)
d(A, C) = P(A∩C) + P(A∩C) = P(A∩C∩B) + P(A∩C∩B) + P(A∩
C∩B) + P(A∩C∩B)
P(A∩C∩B)≤P(C∩B)P(A∩C∩B)≤P(A∩B)
P(A∩C∩B)≤P(A∩B)P(A∩C∩B)≤P(C∩B)
d(A, C)≤P(C∩B) + P(A∩B) + P(A∩B) + P(C∩B)
P(C∩B) + P(A∩B) + P(A∩B) + P(C∩B) = P[(A∩B)∪(A∩B)] +
P[(C∩B)∪(C∩B)]
=P(A∆B) + P(B∆C) = d(A, B) + d(B, C)
d(A, C)≤d(A, B) + d(B, C)
C=∅d(A, ∅)≤d(A, B) + d(∅, B)
∀X∈ T , d(X, ∅) = P(∅∆X) = P(X)
P(A)≤d(A, B) + P(B)
A B P (B)≤d(A, B) + P(A)
|P(A)−P(B)| ≤ d(A, B)