OSM 19 août 2015
Constructions tirées des livres d’Euclide
Euclide I.1
Construire un triangle équilatéral ayant un segment donné pour côté.
Euclide I.2
Construire un segment isométrique à un segment donné, connaissant l’une de ses extrémités.
Euclide I.3
On donne une demi-droite issue du point Aet passant par le point B. On donne également
le segment CD. Construire alors le point Esur AB, tel que le segment AE est isométrique
au segment CD.
Euclide I.9
Construire la bissectrice d’un angle donné.
Euclide I.10
Construire le milieu d’un segment donné.
Euclide I.11
Etant donné deux points Aet Bet la droite dAB passant par ces deux points, construire la
perpendiculaire à dAB passant par A.
Euclide I.12
Etant donné un point Chors de la droite dAB , construire la perpendiculaire à la droite dAB
par C.
Euclide I.22
Construire un triangle dont les côtés sont respectivement isométriques à trois segments don-
nés dont les longueurs ont la propriété suivante : la somme des longueurs de deux quelconques
des segments est supérieure à la longueur du troisième.
Euclide I.23
Etant donné le segment AB et l’angle
\
CDE, construire un point Ftel que
[
F AB
\
CDE
Euclide I.31
Par un point donné, construire la parallèle à une droite donnée.
Euclide I.42
Construire un parallélogramme ayant un angle isométrique à un angle donné et dont la
surface est celle d’un triangle donné.
Euclide I.44
Construire un parallélogramme ayant un segment donné pour côté, ayant un angle isomé-
trique à un angle donné, et ayant l’aire d’un triangle donné.
1
OSM 19 août 2015
Euclide I.45
Construire un parallélogramme ayant un angle isométrique à un angle donné et ayant l’aire
d’un polygone donné.
Euclide I.46
Construire un carré ayant pour côté un segment donné.
Euclide II.11
Etant donné un segment AB, construire un point Xsur AB tel que
(AB)·(BX) = (AX)2
Euclide II.14
Construire un carré dont l’aire est égale à celle d’un polygone donné.
Euclide III.1
Etant donné trois points non alignés, construire le centre du cercle passant par ces trois
points.
Euclide III.17
Par un point donné hors d’un cercle donné, construire une tangente au cercle.
Euclide VI.12
Construire un quatrième proportionnel à trois segments donnés. (Etant donné trois segments
de longueurs p,q,r, construire un segment de longueur xde sorte que p/q =r / x.)
Euclide VI.13
Construire une moyenne proportionnelle à deux segments donnés. (Etant donnés deux seg-
ments de longueur pet q, construire un segment de longueur xtel que p/ x =x / q)
Euclide IV.1
Dans un cercle donné, inscrire une corde isométrique à un segment qui est plus court que le
diamètre du cercle.
Euclide IV.2
Dans un cercle donné, inscrire un triangle qui a les mêmes angles qu’un triangle donné.
Euclide IV.3
Construire un triangle ayant les mêmes angles qu’un triangle donné et circonscrit à un cercle
donné.
Euclide IV.4
Dans un triangle donné, inscrire un cercle.
Euclide IV.5
Tracer le cercle circonscrit à un triangle donné.
Euclide IV.6
Dans un cercle donné, inscrire un carré.
2
OSM 19 août 2015
Euclide IV.7
Circonscrire un carré à un cercle donné.
Euclide IV.8
Dans un carré donné, inscrire un cercle.
Euclide IV.9
Circonscrire un cercle à un carré donné.
Euclide IV.10
Construire un triangle isocèle dont les angles de la base valent le double du troisième angle.
Euclide IV.11
Dans un cercle donné, inscrire un pentagone régulier.
Euclide IV.12
Circonscrire un pentagone régulier à un cercle donné.
Euclide IV.13
Dans un pentagone régulier donné, inscrire un cercle.
Euclide IV.14
Circonscrire un cercle à un pentagone régulier donné.
Euclide IV.15
Dans un cercle donné, inscrire un hexagone régulier.
Euclide IV.16
Dans un cercle donné, inscrire un pentadécagone régulier.
3
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !