(1 x2)y00 2xy0+
n(n+ 1)y= 0
(1x2)y00 xy0+n(n+
1)y= 0
x2y00 +xy0+ (k2x2
m2)y= 0
y00 + (1/x)y0+ (k2
m2/x2)y= 0
x2y00 +νxy0+
(x2m2) = 0
xy00 +(1x)y0+ny = 0
y00 2xy0+ 2ny = 0
x3y00 +xy0+ 2y= 0
(x2+α1x+α0)y00 + (β1x+β0)y0λy = 0
α(x)
wα
wα
wα = 0
α(x)
(xa)2+b2
´dx/α(x) = (1/b)Arctg (xa)/b
α(x)y00 + (β1x+β0)y0λy = 0
β1x+β00
{Pn} {Qn}w(x)
Pn=anQn
{Pn(x)}
w(x){P0
n(x)}
w(x)α(x)
Gm
n(x)
Gm
nm(x) = dm
dxmPn(x)
Tn(x)
p=q=1/2
Tn(1) = 1 Tn(cos(θ)) =
cos
fn(x) =
(1/x)H2n+1(x)
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !