Université Saad Dahlab de Blida 2015 - 2016
Département S.T
Unité d’enseignement Chimie 1
Série de TD N°3 atome de Bohr
Exercice 1*
Selon le modèle de Bohr, calculer :
1. Le rayon de la première orbite de ’hydrogène ?
2. La vitesse de l’électron sur cette orbite,
3. L’énergie totale de l’électron sur cette orbite ,
4. L’énergie qui accompagne la transition électronique du niveau n=4 au niveau n=1
5. L’énergie d’ionisation de l’atome d’hydrogène.
données: a0=0.53Å , EH=-13.6 eV , V1=2.19 106 m/s
Exercice 2**
L’énergie totale d’un ion hydrogénoide de numéro Z a pour expression :
En= 2𝜋2𝐾2𝑍2𝑚 𝑒 4
𝑛22
1. En utilisant la relation ci-dessus, retrouver l’expression des séries spectrales et déduire la
constante de Rydberg de l’atome d’hydrogène.
2. Déterminer la longueur d’onde de la 1er raie de la raie limite de la série de Lymann, Balmer
Paschen du spectre d’émission de l’atome d’hydrogène.
3. Situer chaque raie dans le domaine spectral et représenter ces transitions électroniques sur
un diagramme énergétique. (RH=1.1 107m-1)
Exercice 3*
A. Une radiation lumineuse de longueur d’onde = 3.65 nm. provoque l’ionisation d’un
hydrogénoïdeZX+b initialement à son état fondamental.
1. Calculer son numéro atomique et sa charge et déduire son énergie d’ionisation.
B. On considère un hydrogénoïdeZX+bdans son 2ème état excité, son rayon est de 1.59A°
1. Calculer son numéro atomique et sa charge.
C. On considère un hydrogénoïdeZX+bdans son 5ème état excité, sa vitesse est de 1.03x106 m/s
1. Calculer son numéro atomique et sa charge.
D. On considère un ion hydrogenoide ZX+b la fréquence de la lumière émise lors de la transition
du 3ème état excité vers l’état fondamental est = 15x106s-1 .
1. Calculer son numéro atomique et deduire sa charge. (RH=1.1 107m-1 , EH=-13.6 eV)
Exercice 4
A. On considère trois raies du spectre d’émission de l’atome d’hydrogène : la raie limite de la
série de Paschen, la première raie de la série de Lyman et la 3ème raie de la série de Balmer.
1. Représenter les trois transitions sur le diagramme énergitique.
2. Calculer la longueur d’onde de chaque raie. Situer ces raies dans le domaine spectral.
B. Soit l’ion hydrogènoïdeZLi2+ la raie correspondant à la plus petite longueur d’onde de son
spectre d’émission est Z = 101°A.
1. Quelle est la transition correspondant à cette raie ? Calculer son énergie (eV).
2. Donner la relation entre les longueurs d’onde Z et H des radiations émises
respectivement pour un hydrogénoïde et l’atome d’hydrogène au cours de la même
transition.
3. Calculer alors la longueur d’onde pour l’atome d’hydrogène et cela pour la même
transition. Déduire son énergie.
Exercice 5
L’électron d’un atome d’hydrogène dans l’état d’énergie En = -0.85 eV effectue une transition vers le
niveau d’énergie Em=-3.4 eV.
1. Calculer l’énergie émise lors de cette transition.
2. Déduire la longueur d’onde correspondante.
3. A quelle transition n m correspond cette émission.
4. A quelle série spectroscopique appartient cette raie.
5. Calculer la fréquence correspondante à la même transition pour l’ion Be3+.
Exercice 6*
1. L’atome d’hydrogène absorbe une radiation électromagnétique qui fait passer l’électron
de l’état fondamental au 7ème état excité. Calculer la longueur d’onde de cette radiation
ainsi que l’énergie du photon absorbé.
2. Lors du retour de l’électron à l’état fondamental, trois photons de longueurs d’ondes
respectives 1, 2 et 3 sont émises . Si 2 = 4842 déterminer à quelle transition
correspond-elle ? En déduire alors les transitions correspondantes à 1 et 3.
3. Représenter les trois transitions sur le diagramme d’énergie en précisant la série ainsi
que le domaine spectral.
Exercice 7
1. Calculer la longueur d’onde de la 1ère et de la 3ème raies produites dans le visible du
spectyre d’émission de l’atome d’hydrogène.
2. Calculer la longueur d’onde en de la raie limite produite dans le visible.
3. Une des raies du spectre d’émission de H a une longueur d’onde = 4090A°. A quelle
transition correspond-elle ?
4. Si un atome d’hydrogène dans son état fondamental absorbe un photon de longueur
d’onde 1 = 93.5nm, puis émet un photon de longueur d’onde 2 = 2620 nm. Sur quel
niveau se trouve l’électron après cette émission.
Exercice 8*
On considère un atome d’hydrogène dans son état excité n2.Lors de la de la désexcitation, il émet
deux photons de longueurs 1 = 409nm. et 2.
1. Déterminer les transitions correspondantes et les représenter sur un diagramme d’énergie.
2. Calculer 2et l’énergie correspondante à cette transition.
3. Le retour de l’état n2 à l’état fondamental peut se faire en une seule étape (émission d’un seul
photon de longueur d’onde 3). Donner la relation entre 1, 2et 3. Déduire 3.
Exercice 9*
1. Calculer la petite longueur d’onde et la plus grande longueur d’onde de la 2ème série du
spectre d’émission de l’ion zBe3+.
2. Calculer les énergies émises.
3. Calculer les longueurs d’onde pour l’atome d’H pour les mêmes transitions.
Exercice 10
On considère l’ion zXn+ dans son deuxième état excité, le rayon de l’orbite est alors de 1.59 A°.
Calculer :
1. Le numéro atomique Z et sa charge n ;
2. Le temps mis pour effecteur un tour autour du noyau ;
3. La force d’attraction exercée par le noyau sur cet électron ;
4. L’énergie d’ionisation de cet ion à partir de cet état.
RH=1.1 107m-1 , EH=-13.6 eV
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !