a < 1
(un)
t7−1
2(1 + t2)
[0,1]
0xa < 1 =f(0) f(x)f(a)< f(1).
0xa < 1 =
1
2f(x)f(a)<1.
nNx7−xn
[0,1]
0(f(t))n(f(a))nt[0, a]
a0< a f
Za
0
0 dtZa
0
(f(t))ndtZa
0
(f(a))ndt
0una(f(a))nnN
0< a < 10< f(a)<1n7−(f(a))n
(un)n
+
Pun
n un+1 =Sn+1 Sn(Sn)
n+ 1
r
n
X
k=0
rk!×(1 r) =
n
X
k=0
rk
n+1
X
k=1
rk
= 1 rn+1
(1 r)6= 0
n
X
k=0
rk=1rn+1
1r
0ta0f(t)<1
n
X
k=0
(f(t))k=1(f(t))n+1
1f(t)t[0, a]
1f(t)
[0, a]
Za
0n
X
k=0
(f(t))k!dt=Za
0
1(f(t))n+1
1f(t)dt
n
X
k=0 Za
0
(f(t))kdt=Za
0
1(f(t))n+1
1f(t)dt
n
X
k=0
uk=Za
0
1(f(t))n+1
1f(t)dt Sn=Za
0
1(f(t))n+1
1f(t)dt
f
Sn=Za
0
1(f(t))n+1
1
2(1 t2)dt
Sn= 2 Za
0
1(f(t))n+1
1t2dt
0< a 0<1t20(f(t))n+1 <1t[0, a]
Sn2Za
0
dt
1t2
(Sn)
Pun
0(f(t))n+1 (f(a))n+1 t[0, a]
0<1a21t2t[0, a]
t7−1t2[0, a]
0(f(t))n+1
1t2(f(a))n+1
1a2t[0, a]
a0< a
0Za
0
(f(t))n+1
1t2dta(f(a))n+1
1a2
n7−Za
0
(f(t))n+1
1t2dt
n+
Sn= 2 Za
0
1(f(t))n+1
1t2dt
Sn=Za
0
2
1t2dt2Za
0
(f(t))n+1
1t2dt
n+
lim
n+
Sn=Za
0
2
1t2dt
I=Za
0
2
1t2dt
2
1t2
2
1t2=1
1 + t+1
1t
1t1 + t
Za
0
2
1t2dt= ln(1 + a)ln(1 a)
I= ln 1 + a
1a
a= 1.
(un)
0t10t2t01 + t21 + t
0(1 + t2)n(1 + t)nt[0,1]
0(1 + t2)n
2n(1 + t)n
2nt[0,1]
[0,1]
0<1
Z1
0
0 dtZ1
0
(1 + t2)n
2ndtZ1
0
(1 + t)n
2ndt
0unIn
In=1
2nZ1
0
(1 + t)ndt
x7−t=x1C1R
Z1
0
(1 + t)ndt=Z2
1
xndx
Z1
0
(1 + t)ndt="xn+1
n+ 1#2
1
=2n+1 1
n+ 1
In=2
n+ 1 1
2n(n+ 1)
Inn+
un+
P(1)nun
n
X
k=0
(1)k(f(t))k
t6= 1 n
r=f(t)
n
X
k=0
(1)k(f(t))k=1+(1)n(f(t))n+1
1 + f(t)
= 2 1 + (1)n(f(t))n+1
3 + t2
t= 1
n
X
k=0
(1)k(f(1))k= 0 nimpair
= 1 npair
[0,1]
n
X
k=0
(1)kuk=
n
X
k=0
(1)kZ1
0
(f(t))kdt
=Z1
0
n
X
k=0
(1)k(f(t))kdt
= 2 Z1
0
1 + (1)n(f(t))n+1
3 + t2dt
f0f(t)10(f(t))n1t
[0,1],nN
01
3 + t21t[0,1]
0(f(t))n+1
3 + t2(f(t))n+1 t[0,1]
[0,1]
[0,1]
Z1
0
0 dtZ1
0
(f(t))n+1
3 + t2dtZ1
0
(f(t))n+1 dt
0Jnun+1
n+Jn
lim
n+
Jn= 0
Jn
n
X
k=0
(1)kuk=Z1
0
2
3 + t2dt+ 2 (1)nJn
n+
lim
n+
n
X
k=0
(1)kuk=Z1
0
2
3 + t2dt
x7−t=3x
"0,3
3#[0,1]
Z3
3
0
2
3+3x23 dx=Z1
0
2
3 + t2dt
u7−x= tan(u)0,π
6
"0,3
3#
Zπ
6
0
1
1 + tan2(u)(1 + tan2(u)) du=Z3
3
0
1
1 + x2dx
Z1
0
2
3 + t2dt=23
3×Zπ
6
0
1
1 + tan2(u)(1 + tan2(u)) du
=π3
9
(1)nun
+
X
k=0
(1)kuk=π3
9.
Pun
[0,1]
0t21 =0t22t21 + t2
0t21 + t2
20t2f(t)t[0,1]
0t2n(f(t))nt[0,1]
[0,1]
Z1
0
t2ndtZ1
0
(f(t))ndt
1
2n+ 1 unnN
n2n+ 1 2 (n+ 1)
1
2 (n+ 1) 1
2n+ 1
1
2
n
X
k=0
1
(n+ 1)
n
X
k=0
1
2n+ 1
+n
Sn++
Pun+
X(un)2Xun
n+ 1
0unInIn=2
n+ 1 1
2n(n+ 1) 2
n+ 1
0u2
nI2
nI2
n4
(n+ 1)2nN
X(un)2
0un
n+ 1 In
n+ 1
In
n+ 1 2
(n+ 1)2nN
Xun
n+ 1
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !