CORRECTION DES EXERCICES POUR LE MARDI 12 JANVIER

a+b ab
P GCD(a+b;a) = 1 d(a+b)
a d a +ba=b d a b a b
d= 1 P GCD(a+b;a)=1 P GCD(a+b;b)=1
P GCD(a+b;ab) = 1
a+b a2ab +b2
a2ab +b2=a2+ 2ab +b23ab = (a+b)23ab
P GCD(a2ab+b2;a+b) = P GCD(a+b;3ab)d
P GCD(a2ab +b2;a+b)a+b ab
u v (a+b)u+ (ab)v= 1 3(a+b)u3abv =3
d=P GCD(a+b;3ab)d a+b d 3ab d 3(a+b)u3abv
d3d d = 1 a+b a2ab +b2
d= 3 a+b a2ab +b2
P GCD(a+b;a2ab +b2)
P GCD(a+b;a2ab +b2)=3 a+b P GCD(a+b , 3) = 3
P GCD(a+b;a2ab +b2) = P GCD(a+b, 3)
P GCD(a+b , a2ab +b2) = 1 P GCD(a+b , 3)
P GCD a +b3ab
(a+b)23ab a2ab +b2P GCD(a+b , a2ab +b2) = 1
P GCD(a+b , 3) = 1 P GCD(a+b;a2ab +b2) = P GCD(a+b, 3)
P GCD(a+b;a2ab +b2) = P GCD(a+b, 3)
½xy = 5292
P GCD(x , y) = 6 (x;y)N2x
y x0=x
6Ny0=y
6N
xy = 5292 36x0y0= 5292 x0y0= 147 P GCD(x , y) = 6 P GCD(6x0,6y0) = 6 P GCD(x0, y0) = 1
½x0y0= 147
P GCD(x0, y0) = 1
147 = 2 ×72(1 + 1) ×(2 + 1) = 6
(x0;y0)x0y0= 147 (1 ,147) ; (3 ,49) ; (7 ,21) ; (21 ,7) .
(7,21) (21 ,7)
(x , y)x0y0(6 ,882) (18 ,294) (294 ,18)
(882 ,6)
xy = 5292 x0y0x0y0= 147 P GCD(x , y) = 6
x0y0P GCD(x0, y0) = 1 P GCD(1 ,147) = 1
P GCD(3 ,49) = 1 S={(6 ,882) ; (18 ,294) ; (294 ,18) ; (882 ,6)}
(AB)xA6=xB(AB)
y=mx +p m =yByA
xBxA
=79
7+7 =16
14 =8
7
(AB)y=8
7x+p A (AB)yA=8
7xA+p9 = 8
7×(7) + p
p= 9 8 = 1 (AB) : y=8
7x+ 1 (AB)E
(x;y)y=8
7x+ 1 y=8
7x+ 1 8x+ 7y= 7
8x+7y= 7 x y P GCD(8 ; 7) = 1
(AB)(E) =
8x+ 7y= 7 (x0;y0) = (0 ,1)
8x+ 7y= 7
(x , y) 8x+7y= 7 8x+7y= 8x0+7y08x8x0= 7y07y
8(xx0) = 7(y0y)y0yZ8(xx0)P GCD(7 ,8) = 1
xx0kZxx0= 7k
x= 7k8×7k= 7(y0y)
8k=y0y y = 1 8k(x , y) 8x+ 7y= 7 kZ
(x , y) = (7k , 18k)
8x+ 7y= 7 kZ8x+ 7y= 8(7k) + 7(1 8k) = 56k+ 7 56 = 7
(E) (7k , 18k)kZ
(AB)(F) (x , y)
(AB)(E)76x6776y69767k67
kZ16k61k= 0 k= 1 k=1
7618k69⇔ −868k681>k>1k∈ {−1,0,1}k=1
(x , y) = (7,9) k= 0 (x , y) = (0 ,1) k= 1 (x , y) = (7 ; 7)
(AB)F={(7,9) ; (0 ; 1) ; (7 ; 7)}
P GCD(165 ; 98) 165 = 98 + 67 98 = 67 + 31
67 = 31 ×2 + 5 31 = 5 ×6 + 1 5 = 5 ×1+0 P GCD(165 ,98) = 1
P GCD(165 ; 98) = 1 (E) : 165x+ 98y= 1
(E)
1 = 31 5×6 = 31 (67 31 ×2) ×6 = 31 ×13 6×67 = (98 67) ×13 6×67
= 98 ×13 19 ×67 = 98 ×13 (165 98) ×19 = 98 ×32 19 ×165
(x0;y0) = (19 ; 32) (E)
(x , y) (E) 165x+ 98y= 165x0+ 98y0
165x165x0= 98y098y165(xx0) = 98(y0y)y0yZ
165(xx0)P GCD(165 ,98) = 1 xx0
kZxx0= 98k x =19 + 98k
165 ×98k= 98(y0y) 165k=y0y y = 32 165k
(x , y) 165x+ 98y= 1 kZ(x , y) = (19 + 98k , 32 165k)
(E)kZ
165x+ 98y= 165(19 + 98k) + 98(32 165k) = 165x0+ 98y0= 1
(E)S={(19 + 98k , 32 165k) ; kZ}
N M
x
x= 17N+ 4
x= 11M+ 9 17N+ 4 = 11M+ 9
17N11M= 5 (E) : 17N11M= 5 (N;M)
17 = 11+6 11 = 6+5 5 = 116 = 11(1711) = 11×217
(N0;M0) = (1 ; 2) (E)
(N;M) (E) 17N11M= 17N011M0
17(NN0) = 11(MM0)MM0Z17(NN0)P GCD(11 ; 17) = 1
NN0
kZNN0= 11k N =1 + 11k17(NN0) = 11(MM0)
17 ×11k= 11(MM0) 17k=MM0M=2 + 17k x = 17N+ 4
x= 17(1 + 11k) + 4 = 13 + 187k k Z06x6200 0 613 + 187k6200
13 6187k6213 0 <13
187 6k6213
187 <2k k = 1
x= 187 13 = 174
k= 1 N=1 + 11 = 10 M=2 + 17 = 15
15 ×11 = 165
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !