p= 9 −8 = 1 (AB) : y=−8
7x+ 1 (AB)∩E
(x;y)y=−8
7x+ 1 y=−8
7x+ 1 ⇔8x+ 7y= 7
8x+7y= 7 x y P GCD(8 ; 7) = 1
(AB)∩(E) = ∅
8x+ 7y= 7 (x0;y0) = (0 ,1)
8x+ 7y= 7
(x , y) 8x+7y= 7 8x+7y= 8x0+7y08x−8x0= 7y0−7y
8(x−x0) = 7(y0−y)y0−y∈Z8(x−x0)P GCD(7 ,8) = 1
x−x0k∈Zx−x0= 7k
x= 7k8×7k= 7(y0−y)
8k=y0−y y = 1 −8k(x , y) 8x+ 7y= 7 k∈Z
(x , y) = (7k , 1−8k)
8x+ 7y= 7 k∈Z8x+ 7y= 8(7k) + 7(1 −8k) = 56k+ 7 −56 = 7
(E) (7k , 1−8k)k∈Z
(AB)∩(F) (x , y)
(AB)∪(E)−76x67−76y69−767k67
k∈Z−16k61k= 0 k= 1 k=−1
−761−8k69⇔ −86−8k68⇔1>k>−1k∈ {−1,0,1}k=−1
(x , y) = (−7,9) k= 0 (x , y) = (0 ,1) k= 1 (x , y) = (7 ; −7)
(AB)∩F={(−7,9) ; (0 ; 1) ; (7 ; −7)}
P GCD(165 ; 98) 165 = 98 + 67 98 = 67 + 31
67 = 31 ×2 + 5 31 = 5 ×6 + 1 5 = 5 ×1+0 P GCD(165 ,98) = 1
P GCD(165 ; 98) = 1 (E) : 165x+ 98y= 1
(E)
1 = 31 −5×6 = 31 −(67 −31 ×2) ×6 = 31 ×13 −6×67 = (98 −67) ×13 −6×67
= 98 ×13 −19 ×67 = 98 ×13 −(165 −98) ×19 = 98 ×32 −19 ×165
(x0;y0) = (−19 ; 32) (E)
(x , y) (E) 165x+ 98y= 165x0+ 98y0
165x−165x0= 98y0−98y165(x−x0) = 98(y0−y)y0−y∈Z
165(x−x0)P GCD(165 ,98) = 1 x−x0
k∈Zx−x0= 98k x =−19 + 98k
165 ×98k= 98(y0−y) 165k=y0−y y = 32 −165k
(x , y) 165x+ 98y= 1 k∈Z(x , y) = (−19 + 98k , 32 −165k)
(E)k∈Z
165x+ 98y= 165(−19 + 98k) + 98(32 −165k) = 165x0+ 98y0= 1
(E)S={(−19 + 98k , 32 −165k) ; k∈Z}
N M
x
x= 17N+ 4
x= 11M+ 9 17N+ 4 = 11M+ 9
17N−11M= 5 (E) : 17N−11M= 5 (N;M)
17 = 11+6 11 = 6+5 5 = 11−6 = 11−(17−11) = 11×2−17
(N0;M0) = (−1 ; −2) (E)
(N;M) (E) 17N−11M= 17N0−11M0
17(N−N0) = 11(M−M0)M−M0∈Z17(N−N0)P GCD(11 ; 17) = 1