SP5 Systèmes du premier ordre
Exercices de cours
Exercice 1 Schéma équivalent du condensateurExercice 1 Donner un modèle équivalent au condensateur
Déterminer des grandeurs en régime permanent
(1) On considère un condensateur en convention récepteur. Le représenter sur un schéma et rappeler le relation liant la tension à ses
bornes et le courant le parcourant.
(2) Que devient cette relation en régime stationnaire.
(3) À quel dipôle est équivalent le condensateur en régime stationnaire?
(4) On considère le schéma électrique ci-dessous:
E
R
CU
Tracer un schéma équivalent au montage en régime stationnaire et en déduire la valeur de Uainsi que du courant dans le circuit,
tous deux en régime stationnaire.
Exercice 2 Schéma équivalent de la bobineExercice 2 Donner un modèle équivalent à la bobine
Déterminer des grandeurs en régime permanent
(1) On considère une bobine en convention récepteur. La représenter sur un schéma et rappeler le relation liant la tension à ses bornes
et le courant la parcourant.
(2) Que devient cette relation en régime stationnaire.
(3) À quel dipôle est équivalente la bobine en régime stationnaire?
(4) On considère le schéma électrique ci-dessous:
E
R
LU
Tracer un schéma équivalent au montage en régime stationnaire et en déduire la valeur de Uainsi que du courant dans le circuit,
tous deux en régime stationnaire.
Exercice 3 Différents régimesExercice 3 Identifier des régmes permanents et transitoires
(1) Identifier les 4 régimes ci-dessous.
510 15 20
10
5
5
10
t(s)
s(t)
510 15 20
10
5
5
10
t(s)
s(t)
510 15 20
10
5
5
10
t(s)
s(t)
510 15 20
10
5
5
10
t(s)
s(t)
1
SP5: Systèmes du premier ordre Exercices de cours
(2) Sur le graphe qui représente un régime transitoire, identifier l’instant auquel finit le premier régime transitoire, celui où semble
commencer le second et la durée du régime transitoire.
Exercice 4 Solution généraleExercice 4 Vérifier la solution d’une équation différentielle
Vérifiez que la solution donnée dans le cours sg(t) = λexp t
τest bien solution de ds
dt+1
τs=0 pour n’importe quelle valeur de λ.
Exercice 5 Solutions particulièresExercice 5 Trouver une solution particulière pour un second membre constant
Pour chacune des équations différentielles suivantes, trouver une solution particulière.
(1) ds
dt+1
6s=0
(2) dU
dt+1
RC U=E
RC
(3) dv
dt
λ
mv=g
Exercice 6 Relations de continuitéExercice 6 Interpréter la continuité de la tension aux bornes d’un condensateur
Interpréter la continuité de l’intensité du courant dans une bobine
(1) En utilisant la relation liant le courant et la tension d’un condensateur, montrer que la tension à ses bornes est nécessairement
continue.
(2) Le montrer cette fois en utilisant l’énergie stockée dans un condensateur, sachant qu’une puissance ne peut pas être infinie.
(3) Mêmes questions pour l’intensité parcourant une bobine.
Exercice 7 Équation différentielleExercice 7 Établir une équation différentielle du premier ordre
On réalise le montage suivant. À t=0, on bascule l’interrupteur sachant qu’à t=0, le régime permanent était atteint.
E
Ri
C
Ut=0
E
Ri
C
U
(1) Écrire la loi de mailles dans ce circuit pour t>0.
(2) En déduire par substitution l’équation différentielle sur la tension Uet la mettre sous forme canonique.
(3) En repartant de la loi des mailles, en déduire par dérivation l’équation différentielle sur le courant iet la mettre sous forme canonique
(4) Quelle est l’expression de τ. Vérifier par analyse dimensionnelle que τest bien homogène à un temps.
Exercice 8 Conditions initialesExercice 8 Utiliser les continuités des courants et tensions dans un circuit
Utiliser un modèle équivalent aux dipôles en régime permanent
On reprend le système électrique décrit dans l’exercice précédent.
(1) Tracer un schéma à t=0en remplaçant les bobines et les condensateurs par leur schéma équivalent en régime permanent.
(2) En déduire U(t=0)et i(t=0).
(3) Par continuité des bonnes grandeurs, en déduire les valeurs de U(t=0+)et de i(t=0+).
2/3
SP5: Systèmes du premier ordre Exercices de cours
Exercice 9 État finalExercice 9 Utiliser un modèle équivalent aux dipôles en régime permanent
(1) Tracer un schéma à t= +en remplaçant les bobines et les condensateurs par leur schéma équivalent en régime permanent.
(2) En déduire U(t= +)et i(t= +).
Exercice 10 Résoudre l’équation différentielleExercice 10 Résoudre une équation différentielle linéaire du premier ordre
(1) Donner la solution générale de l’équation homogène (sans second membre) sur la tension U.
(2) Trouver une solution particulière de l’équation complète.
(3) En utilisant les conditions initiales, donner alors la fonction U(t).
(4) En déduire la fonction i(t).
Exercice 11 Bilan énergétiqueExercice 11 Réaliser un bilan énergétique
(1) Exprimer la puissance reçue par le générateur, en déduire la puissance fournie Pgau circuit.
(2) Exprimer alors l’énergie Egque le générateur a fourni au circuit entre t=0 et un instant tquelconque en fonction de t,C,τet E.
(3) Exprimer la puissance reçue par la résistance puis l’énergie ERque celle-ci a dissipé par effet Joule entre t=0 et un instant t
quelconque en fonction des mêmes variables.
(4) Exprimez l’énergie stockée ECdans le condensateur entre t=0 et un instant tquelconque en fonction des mêmes variables.
(5) Déduire de la loi des mailles une relation liant l’énergie fournie par le générateur pendant dt, l’énergie dissipée par effet Joule
pendant dtet l’énergie reçue par le condensateur pendant dt.
(6) Vérifier avec vos expressions des questions 2, 3 et 4 que cette égalité est bien respectée.
(7) Àt= +, quelle aura été l’énergie totale fournie par le générateur, l’énergie stockée dans le condensateur et l’énergie totale
dissipée par effet Joule?
3/3
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !