f
x327
x33; x25x+ 6
x+ 2 2; x
x+ 3x0; sin(2x)
sin(3x)0;
(1 x)(2 x)(3 x) + ;x21
2x3+ 1 +; cos x3x+;sin x
x+.
f
f(x) = 2 1
x21
f
f(x) = 2x25x+ 7
x
Df+
f(x) = px2+ 2x+ 3,D:y=x+ 1
f
f(x) = (50 + x20)22500
x20
(50 + x20)2f(x)
x= 0,6; 0,4; 0,3; 0,2; 0,1; 0,01.
f0
f(x)x6= 0 f0
2f f(x) = ½x21x2
5x x > 2
sin x= 1 x
α α
x2+x3 = 0
x2+x;5
x2; 3xsin x; (2x1)x2; cos3x; (x2+x+ 1)4;x3
x21;sin x+ cos x
1 + cos x
Cff x
f(x) = x4
f x f(x) = 4
3x3+1
5x5
f:x7→ 2
5p25 x2
x327
x3=(x3)(x2+ 3x+ 9)
x3=x2+ 3x+ 9 x3
27
lim
x→−2(x25x+ 6) = 20 lim
x→−2+
x25x+ 6
x+ 2 = +lim
x→−2
x25x+ 6
x+ 2 =−∞
x
x+ 3x=1
x+ 3 lim
x0+
x
x+ 3x=1
30)
sin(2x)
sin(3x)=sin(2x)
2x2x
3x3x
sin(3x)=sin(2x)
2x2
33x
sin(3x)
x0
2
3lim
x0
sin(x)
x= 1
lim
x+(1 x)(2 x)(3 x) = −∞
x21
2x3+ 1 =11
x2
2x+1
x2
x+
0
cos x3x13xlim
x+(13x) = −∞ lim
x+(cos x3x) = −∞
|sin x
x| ≤ 1
xlim
x+
1
x= 0 lim
x+
sin x
x= 0 0 ≤ |sin x
x| ≤ 1
x)
f f(x) = 2 1
(x1)(x+ 1)
lim
x→−1
f(x) = −∞ lim
x→−1+f(x) = +
x=1Cfx= 1
Cf
lim
x+f(x) = 2 lim
x→−∞ f(x) = 2
y= 2 Cf±∞
f(x) = 2x25x+ 7
x= 2x5 + 7
x
f(x)(2x5) = 7
x
x→±∞
0
∆ : y= 2x5Cf±∞
f(x)(2x5) = 7
xxCfx > 0
x < 0
x x2+ 2x+ 3 >0f IR
f(x)(x+ 1) = px2+ 2x+ 3 (x+ 1) = (px2+ 2x+ 3 (x+ 1)) x2+ 2x+3+(x+ 1)
x2+ 2x+3+(x+ 1)
=(x2+ 2x+ 3) (x+ 1)2
x2+ 2x+ 3 + x+ 1 =2
x2+ 2x+3+x+ 1
x+
0
D Cf+
f(x) = (50 + x20)22500
x20
(50 + x20)2= 2500 0,6 0,4 0,3f(x)100
0,2 0,1 0,01 f(x)=0
lim
0f= 0
(50 + x20)22500 = (50 + x20 50)(50 + x20 + 50) = x20(100 + x20)
f(x) = x20(100 + x20)
x20 = 100 + x20 x0
100
x40 x20
lim
x2
f(x) = f(2) = 3 = lim
x2+f(x)
f2
f f(x) = sin x+x1f(0) = 1<0f(π
2) = π
2>0
f IR 0]f(0), f(π
2)[
f(x) = 0 sin x= 1 x]0,π
2[
f x 0f(x) = x2+x3
f IR
+x > 0
f0(x) = 2x+1
2x>0
f IR+
f f(IR+) = [f(0),lim+f[= [3,+[
f IR+0f(IR+)
f(x) = 0 α[0,+[
f(0) = 3<0f(2) = 1 + 2>0α]0,2[
]0,2[ f(1) = 1<0α]1,2[
x > 0
(x2+x)0= 2x+1
2x
x6= 0
(5
x2)0= (5) (1
x2)0= (5) 2x
x4=10
x3
x
(3xsin x)0= 3 sin x+ 3xcos x
x
((2x1)x2)0= 2 x2+ (2x1) 2x= 6x22x
x
(cos3x)0= 3 (sin x)cos2x=3 sin xcos2x
x
((x2+x+ 1)4)0= 4(2x+ 1)(x2+x+ 1)3
x x216= 0 xIR\{−1,1}
(x3
x21)0=3x2(x21) x32x
(x21)2=x43x2
(x21)2
x1 + cos x6= 0 xIR\{2kπ, k ZZ}
(sin x+ cos x
1 + cos x)0=(cos xsin x)(1 + cos x)(sin x+ cos x)(sin x)
(1 + cos x)2=1 + cos xsin x
(1 + cos x)2
Cf
y=f0(4)(x4) + f(4)
f(4) = 4=2 f0(4) = 1
24=1
4f0(x) = 1
2x
f0(4) = limx4f(x)f(4)
x4= limx41
x+2 =1
4x > 0x=x2
∆ : y=1
4x+ 1
f IR x
f0(x) = 4x2+x4=x2(4 + x2) = x2(2 + x)(2 + x)
f0(x) = 0 x∈ {−2,0,2}
f0(x)>0x]− ∞,2[]2,+[
f0(x)<0x]2,2[
f2 2 f2 2
f:x7→ 2
5p25 x2
f x 25x20(5+x)(5x)0Df= [5,5]
x[5,5] x[5,5] f(x) = 2
5p25 (x)2=f(x)
f[0,5]
f[0,5[ 25 x2>0x[0,5[
f0(x) = 2
5(2x)1
225 x2=2x
525 x2
f00 [0,5[ f[0,5[ f]5,0]
f5
lim
x5
f(x)f(5)
x5
f(x)f(5)
x5=
2
525 x2
x5=2
5p(5 + x)(5 x)
p(5 x)2=2
5
5 + x
5x
p(5 x)2=|5x|0x5x5<0x5 = p(5 x)2
lim
x5
f(x)f(5)
x5= lim
x5
2
5p(5 + x)(5 x)
p(5 x)2=−∞
f5
[0,5] [5,0] (0y)
f0(0) = 0 (0, f(0) = 2)
limx5
f(x)f(5)
x5=−∞ 55
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !