f IR+
f f(IR+) = [f(0),lim+∞f[= [−3,+∞[
f IR+0∈f(IR+)
f(x) = 0 α∈[0,+∞[
f(0) = −3<0f(2) = 1 + √2>0α∈]0,2[
]0,2[ f(1) = −1<0α∈]1,2[
x > 0
(x2+√x)0= 2x+1
2√x
x6= 0
(−5
x2)0= (−5) ∗(1
x2)0= (−5) ∗−2x
x4=10
x3
x
(3xsin x)0= 3 sin x+ 3xcos x
x
((2x−1)x2)0= 2 ∗x2+ (2x−1) ∗2x= 6x2−2x
x
(cos3x)0= 3 ∗(−sin x)∗cos2x=−3 sin xcos2x
x
((x2+x+ 1)4)0= 4(2x+ 1)(x2+x+ 1)3
x x2−16= 0 x∈IR\{−1,1}
(x3
x2−1)0=3x2∗(x2−1) −x3∗2x
(x2−1)2=x4−3x2
(x2−1)2
x1 + cos x6= 0 x∈IR\{2kπ, k ∈ZZ}
(sin x+ cos x
1 + cos x)0=(cos x−sin x)(1 + cos x)−(sin x+ cos x)(−sin x)
(1 + cos x)2=1 + cos x−sin x
(1 + cos x)2
∆Cf
y=f0(4)(x−4) + f(4)
f(4) = √4=2 f0(4) = 1
2√4=1
4f0(x) = 1
2√x
f0(4) = limx→4f(x)−f(4)
x−4= limx→41
√x+2 =1
4x > 0x=√x2
∆ : y=1
4x+ 1
f IR x
f0(x) = −4x2+x4=x2(−4 + x2) = x2(2 + x)(−2 + x)
f0(x) = 0 ⇔x∈ {−2,0,2}
f0(x)>0⇔x∈]− ∞,−2[∪]2,+∞[
f0(x)<0⇔x∈]−2,2[
f−2 2 f−2 2