,P(Ω), P
XR
IR{ωX(ω)I} ⊂ P(Ω)
X(Ω)
(X=x){ωX(ω) = x}
(a<X){ωa<X(ω)}
(Xb){ωX(ω)b}
(X= 3)
(X < 5)
((X3) (X5)) = (3 X5) = ((X= 3) (X= 4) (X= 5))
X, Y (Ω,A)λ
X+Y, λX, XY, max(X, Y ),min(X, Y ) (Ω,A).
P= 5 ×A+ 4 ×R+ 3 ×D+ 1 ×V
 PX
X(Ω,P(Ω), P )
PX:P((X(Ω)) [0; 1], A 7→ P(XA)
(X(Ω),P((X(Ω)))
PXX
X
X
X X(Ω)
x X(Ω)
(X=x)
(X=x) =
P(X=x) =
R R(Ω) = [[0; 4]]
(X=xk)xkX(Ω)
P(B) = P(B(X=x1)) + ··· +P(B(X=xn))
xkX(Ω) P(X=xk)6= 0
P(B) = PX=x1(B)P(X=x1) + ··· +PX=xn(B)P(X=xn)
X(Ω,P(Ω), P ).
X F
F:
RR
x7→ P(X6x)
X Y
X
Y X
Y
X
Y
X Y
X(Ω,P(Ω)) F
xR, F (x)[0; 1]
FR
lim
x→−∞F(x) = 0 lim
x+F(x) = 1
a, b R, a < b P (a < X 6b) = F(b)F(a)
X
X
XN
kN
P(X=k) = F(k)F(k1)
nN{(xi, pi), i [[1; n]]}
(Ω,P(Ω))
card (Ω) n
i[[1; n]] pi>0
n
X
i=1
pi
X(Ω,P(Ω), P ){(xk, pk), k ∈ {1; ..;n}}.
X E(X)
E(X) = x1p1+x2p2+··· +xnpn
IE(X)X
1 2 2
X
X.
X a, b
E(aX +b) = aE(X) + b
X Y 2
E(X+Y) = E(X) + E(Y)
B
N
B E(B)
B N
N
X
Xi
X Xi
pi=P(Xi= 1) pi=1
3pi1+1
3
XiE(X)
X E(X)=0
XE(X)X
r
X(Ω,P(Ω), P ).
r
r
mr(X) = E(Xr)
X(Ω,P(Ω), P ).
V(X) = E(XE(X))2
X(Ω,P(Ω), P )
V(X) = E(X2)E(X)2
a b V (aX +b) = a2V(X)
n p
q= 1 p.
k2ki`eme
(k1)i`eme
Xnn
X2
X3
E(X3) = 4pq V (X3) = 2pq(3 8pq)
E(X)V(X)
X(Ω,P(Ω), P ).
σ(X) = pV(X)
X(Ω,P(Ω), P ).
X σ(X)=1
σ(X)6= 0 X=XE(X)
σ(X)
X.
2 4
B
B
B(Ω) = [[1,5]].
Bi
i
P(B= 1) = P(B1) = 2
6,
P(B= 2) = P(B1B2) = P(B1)PB1(B2) = 4
6×2
5=4
15
P(B= 3) = P(B1B2B3) = P(B1)PB1(B2)PB1B2(B3) = 4
6×3
5×2
4=1
5
P(B= 4) = P(B1B2B3B4) = P(B1)PB1(B2)PB1B2(B3)PB1B2B3(B4)
=4
6×3
5×2
4×2
3=2
15
P(B= 5) = P(B1B2B3B4B5)
=P(B1)PB1(B2)PB1B2(B3)PB1B2B3(B4)PB1B2B3B4(B5)
=4
6×3
5×2
4×1
3×2
2=1
15
E(B)=1×2
6+ 2 ×4
15 + 3 ×1
5+ 4 ×2
15 + 5 ×1
15 =7
3
E(B2)=12×2
6+ 22×4
15 + 32×1
5+ 42×2
15 + 52×1
15 = 7
V(B) = E(B2)[E(B)]2=14
9
E(X)V(X)
X(Ω,P(Ω), P )
X
E(X)0
E(X)=0 P(X= 0) = 1
X Y (Ω,P(Ω), P )
XYE(X)E(Y)
1 / 15 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !