1
PLAN DE COURS
Enseignant :
Jean-Claude Cayer
Département :
Mathématiques
Bureau :
C-2528
Téléphone
(450) 975-6100 poste 6860
Courriel :
jccayer @cmontmorency.qc.ca
__________________________________________________________________________________________
1. PRÉSE NT A T ION DU COU RS ET DU R ÔLE DANS LE PROGR AM ME
Ce cours est un complément au cours 360-300-RE Méthodes quantitatives en sciences humaines. En tant que préalable
universitaire, il vise notamment à satisfaire les exigences de certains programmes, comme psychologie et sciences de
l’éducation. Dans ce cours, l’élève sera initié à des concepts fondamentaux de la théorie des probabilités, il s’initiera
au calcul élémentaire des probabilités, il acquerra une connaissance des fonctions de probabilité et il pourra entrevoir
les possibilités et les limites de la statistique. De plus, l’élève sera habilité à communiquer des raisonnements
statistiques avec clarté et précision et à manipuler efficacement les expressions mathématiques propres à la statistique.
2. COMPÉTENCES VISÉES
Démontrer les qualités d’un esprit scientifique et critique ainsi que des habiletés liées à des méthodes, tant qualitatives
que quantitatives, appropriées aux sciences humaines.
Intégrer tous ses acquis tout au long de sa démarche d’apprentissage dans le programme.
3. OBJECTIFS MINISTÉRIELS
(022W) : Appliquer des outils statistiques avancés, fondés sur la théorie des probabilités, à la prise de décision dans
des contextes d’études en sciences humaines.
(022R) : Approfondir des connaissances disciplinaires sur le phénomène humain.
4. AUTRE COURS CONTRIBUANT À LATTEINTE DES OBJECTIFS MINISTÉRIELS
Aucun
5. OBJECTIFS DAPPRENTISSAGE
Utiliser dans diverses situations les principales définitions, les termes utilisés dans le calcul des probabilités.
Calculer des probabilités dans différentes situations en utilisant les formules appropriées.
Appliquer les notions de variable aléatoire et de fonction de densité de probabilité.
Utiliser dans diverses situations le théorème central limite.
Utiliser les propriétés d’un échantillon aléatoire pour estimer par intervalle de confiance une moyenne et une
proportion d’une population.
Effectuer un test sur une moyenne et une proportion dans une population en utilisant une démarche scientifique
appropriée.
Reconnaître les erreurs de première et seconde espèce susceptibles d’être commises lors d’un test d’hypothèses.
Utiliser la loi du khi-carré pour vérifier la qualité de l’ajustement à des lois théoriques.
Titre du cours :
Méthodes quantitatives avancées
Numéro du cours :
201-301-RE
Programme :
Sciences humaines, profil : Regards sur l’individu (300.13)
Pondération :
2-1-3
Session :
Hiver 2011
2
6. DÉROULEMENT DU COURS
Titre du module 1 : ANALYSE COMBINATOIRE ET PROBABILITÉS
Semaines 1 à 5
Objectifs d’apprentissage
Contenus essentiels
Méthodologie
Activités d’enseignement
et d’apprentissage
Apprentissage :
Utiliser dans diverses situations
les principales définitions, les
termes utilisés dans le calcul
des probabilités.
Calculer des probabilités dans
différentes situations en
utilisant les formules
appropriées.
Expérience aléatoire
Espace échantillonnal
Événement
Analyse combinatoire de
base
Probabilités théoriques et
empiriques
Axiomes et théorèmes
fondamentaux
Probabilité conditionnelle
Événements indépendants
Activités d’enseignement :
Présentation magistrale interactive
Supervision d’exercices en classes
Pré correction formative et
rétroaction sur les devoirs
Activités d’apprentissage :
Écoute attentive
Lecture de la théorie dans le
manuel et des notes de cours
(environ 30 min/sem.)
Exercices en classes
Exercices à la maison (environ
2h30 / sem.)
Synthèse de la matière
DEVOIR 1 individualisé
MINI-TEST 1
TEST 1
Titre du module 2 : VAR. ALÉATOIRES ET LOIS DE PROBABILITÉS
Objectifs d’apprentissage
Contenus essentiels
Apprentissage :
Appliquer les notions de
variable aléatoire et de fonction
de densité de probabilité.
Utiliser dans diverses situations
le théorème central limite.
Variables aléatoires
Loi binomiale
Loi normale
3
Titre du module 3 : ESTIMATION ET TESTS D’HYPOTHÈSES
Semaines 11 à 15
Objectifs d’apprentissage
Contenus essentiels
Méthodologie
Activités d’enseignement
et d’apprentissage
Apprentissage :
Utiliser les propriétés d’un
échantillon aléatoire pour
estimer par intervalle de
confiance une moyenne et une
proportion d’une population.
Effectuer un test sur une
moyenne et une proportion
dans une population en
utilisant une démarche
scientifique appropriée.
Reconnaître les erreurs de
première et seconde espèce
susceptibles d’être commises
lors d’un test d’hypothèses.
Utiliser la loi du khi-carré pour
vérifier la qualité de
l’ajustement à des lois
théoriques.
Estimation d’une moyenne et
d’une proportion
Taille d’échantillon nécessaire
pour satisfaire à une certaine
marge d’erreur désirée
Loi de Student
Test d’hypothèses sur une
moyenne et une proportion
Test d’hypothèses sur deux
moyennes ou deux proportions
Test d’ajustement à une loi
théorique
Activités d’enseignement :
Présentation magistrale interactive
Supervision d’exercices en
classes
Pré correction formative et
rétroaction sur les devoirs
Activités d’apprentissage :
Écoute attentive
Lecture de la théorie dans le
manuel et des notes de cours
(environ 30 min/sem.)
Exercices en classes
Exercices à la maison (environ
2h30 / sem.)
Synthèse de la matière
DEVOIRS 3 et 4 individualisés
MINI-TEST 3
TEST 3
7. ÉVAL U AT I ON S DES APP RE NTISSAGE S
7.1 Évaluations formatives
L’évaluation formative consiste en :
La réalisation d’exercices seul ou en équipe, sur papier ou sur ordinateur, en classe et à l’extérieur du cours, dont
les réponses ou les solutions sont fournies et qui permettent à l’élève de s’auto-vérifier.
La rétroaction suite aux efforts de réflexion afin de répondre aux questions amenées par l’enseignant lors des
exposés magistraux.
Il est important, pour réussir les évaluations sommatives, de réaliser toutes les activités suggérées.
7.2 Évaluations sommatives
Évaluation no 1 (25%)
Objet(s) ou contenu(s)
TEST NO-1 sur les sections 1.1 à 1.4 du livre (pages 7 à 53)
Semaine ou date
21 FÉVRIER
Évaluation no 2 (30%)
Objet(s) ou contenu(s)
TEST NO-2 sur les sections 2.1 à 3.2 du livre (pages 55 à 115)
Semaine ou date
4 AVRIL
Évaluation no 3 (30%)
Objet(s) ou contenu(s)
TEST NO-3 sur les sections 3.3 à 4.4 du livre (pages 116 à 171)
Semaine ou date
16 MAI
Autres évaluations (15%)
Objet(s) ou contenu(s)
MINI-TESTS et DEVOIRS INDIVIDUALISÉS
Semaine ou date
À déterminer par le professeur
Le calendrier et le contenu des évaluations peut changer lors de la session, auquel cas les étudiants seront avertis au moins une
semaine à l’avance.
4
8. RÈGLES, MATÉ R IEL ET MÉDI A G RA PHI E
8.1 RÈGLES CONCERNANT LA PARTICIPATION ET LES ÉVALUATIONS
Politiques du département de mathématiques
Le français écrit : Le professeur accordera une importance particulière à la qualité du français écrit. Lorsque
l’élève aura à produire un document écrit à l’intérieur d’une activité, 10% de la note fera référence à la
qualité de la langue.
Le plagiat : Tout plagiat, fraude, tentative ou collaboration à l’un ou l’autre de ces évènements entraîne la
mention zéro pour le travail ou l’examen concerné, et ce, pour toutes les personnes impliquées. Le professeur
dresse un rapport d’évènement et le conserve au moins six mois. S’il y a lieu, il le transmet à l’adjoint(e)
responsable de l’application de la politique et il doit informer les élèves concernés de sa décision.
L’évaluation : L’apprentissage étant une responsabilité partagée, l’élève a le devoir d’être présent à chacun
de ses cours. Le cas échéant, il est de son devoir de rattraper la matière manquée avant le cours suivant soit en
consultant un collègue ou le professeur. Un élève qui s’absente à plus de 15% du nombre total de périodes
peut se voir attribuer une note ne dépassant pas 50%. Cet élève doit rencontrer son enseignante afin de
discuter avec elle de ses possibilités d’atteindre les objectifs du cours. Lors de cette rencontre, l’enseignant
peut en arriver à la conclusion que l’élève n’est plus en mesure d’atteindre ces objectifs. Dans ce cas,
l’enseignant explique à l’élève sur quoi s’appuie son évaluation de la situation et lui signifie son échec. Toute
absence à une évaluation sans motif sérieux entraîne la note 0. Si pour un motif valable par le professeur (une
attestation officielle est requise), un élève ne peut se présenter à une évaluation à la date prévue, il doit en
aviser le professeur dans les plus brefs délais l’avance si possible, sinon dans un lai d’une semaine
maximum). Dans ce cas, le professeur fixera la date d’un examen différé. De plus, il n’y a pas de reprise pour
un test échoué ni de normalisation.
Le professeur assurera un certain nombre de périodes de disponibilité en dehors des périodes de cours.
L’horaire du professeur ainsi que ses heures de disponibilité seront affichés. Le département offre aussi un
centre d’aide en mathématiques (CAM), au local C-2568.
.
La calculatrice à affichage graphique n’est pas autorisée durant les examens. L’utilisation est permise
dans les cours.
Tous les appareils électroniques sont formellement défendus en examen. Ceux-ci incluent à titre
d’exemple mais ne se limitent pas à : i-pod, mp3, cellulaires, ordinateurs portables,… Leur utilisation en
examen peut entraîner une note de zéro pour cause de plagiat.
Règles sur les évaluations
Il n’y a pas de reprise pour les devoirs (en cas d’absence), ni pour les tests.
Aucun retard n’est permis pour la remise des travaux.
Les dates des examens et la matière à préparer seront précisées au moins une semaine à l’avance.
Les examens demeurent la propriété du département.
La note de passage est de 60%.
En cas d’absence (à faire avant le cours suivant)
1- Retranscrire les notes de cours à partir des notes d’un collègue
2- Lire et comprendre la matière vue par le professeur pendant le cours manqué
3- Faire les exemples vus en classe (il est insuffisant de se contenter de lire les exemples)
4- Lire la section correspondante dans le manuel de référence
5- Prendre connaissance du devoir à remettre pour pouvoir le travailler
8.2 MATÉRIEL REQUIS
Volume obligatoire : Brousseau Guy, Méthodes quantitatives avancées, éd. Modulo Griffon
Une calculatrice scientifique (pas à affichage graphique).
8.3 MÉDIAGRAPHIE
Bélisle, Desrosiers, Introduction à la statistique, Gaëtan Morin éditeur, 1983.
Gilles Grenon et Suzanne Viau, Méthodes quantitatives en sciences humaines, Volume 2:, 2e édition, Gaëtan
Morin, Chenelière Éducation
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !