Corrigé

publicité
ICNA - SESSION 2008
ÉPREUVE COMMUNE DE PHYSIQUE
CORRIGÉ
Câble coaxial.
1.
L'intensité I du courant stationnaire qui circule dans l'âme et la gaine du câble coaxial est telle que :
I=
∫∫ ( J e ) .( dS e ) = ∫∫ ( J e ) .( −dS e )
1 z
z
S1
2 z
z
S2
Les densités volumiques de courant étant supposées uniformes il vient :
I
−I
J1 = J1ez =
e
et J 2 = J 2 ez =
ez
2 z
2
πR1
π R 3 − R 22
(
On observe que :
(
)
)
R12 J1 = R 32 − R 22 J 2
2.
On suppose le câble infiniment long. Sous cette hypothèse toute rotation autour de l'axe z'z et toute
translation parallèlement à cet axe laisse la distribution de courant invariante ; on a donc :
B ( M ) = B ( ρ ) et A ( M ) = A ( ρ )
où ρ est la distance du point considéré à l'axe de révolution.
Par ailleurs tout plan contenant l'axe z'z est plan de symétrie pour la distribution de courant, alors que tout
plan orthogonal à z'z est plan d'antisymétrie. Le potentiel-vecteur, vecteur vrai, et le champ magnétique,
pseudo-vecteur, sont donc tels que :
B ( M ) = B ( ρ ) = B ( ρ ) eϕ et A ( M ) = A ( ρ ) = A ( ρ ) ez
3.
On détermine le champ magnétique à l'aide du théorème d'Ampère appliqué à un contour circulaire
C d'axe z'z et de rayon ρ < R1 . Il vient :
2πρ B ( ρ < R1 ) = µ 0 πρ2 J1 = µ 0 I
ρ2
R12
d'où on déduit :
B ( ρ < R1 ) =
µ I ρ
1
µ 0 J1ρ = 0
2
2π R12
Pour déterminer le potentiel-vecteur dans le même domaine on peut utiliser l'une des deux méthodes
suivantes.
a) A partir de la relation locale B = rot A qui, avec rot ( f U ) = f. ( rot U ) + grad f ∧ U , nous conduit à
B (ρ) = −
dA ( ρ )
dρ
. Par intégration, compte tenu de A ( 0 ) = 0 , on obtient :
A ( ρ < R1 ) = −
b) A partir de la forme intégrale
(
vertical O, eρ , e z
)
µ0 J1ρ2
µ I ρ2
=− 0 2
4
4 π R1
∫∫ B.dS = v∫ A.dA . C est un contour rectangulaire contenu dans le plan
S
C
de normale eϕ . Les côtés verticaux ont une longueur unité, l'un est sur l'axe Oz et
l'autre à la distance ρ < R1 du précédent. On obtient ainsi :
A ( 0 ) − A ( ρ < R1 ) =
µ 0 I ρ2 µ0 J1ρ2
=
4π R12
4
AC
2
ICNA - SESSION 2008
soit le même résultat que précédemment puisque A ( 0 ) = 0 .
4.
Pour R1 < ρ < R 2 , par les mêmes techniques que précédemment et compte tenu de la continuité
du potentiel-vecteur pour ρ = R1 , on obtient :
B ( R1 < ρ < R 2 ) =
A ( R1 < ρ < R 2 ) = −
5.
µ0 I   ρ  1 
µ0 J1R12
 ln 
 +  = −
2 π   R1  2 
2
  ρ  1
 ln 
 + 
  R1  2 
Toujours selon la même démarche il vient, pour R 2 < ρ < R 3 :
B( R2 < ρ < R3 ) =
A ( R 2 < ρ < R3 ) = −
6.
µ 0 I µ 0 J1R12
=
2πρ
2ρ
(
µ0 I
2π R 32 − R 22
)
 R2

 3 − ρ 
 ρ


 ρ 
R
R 32 − ρ2
µ0 I  R 32
ln
+
+ ln  2


2
2
2
2

2π  R 3 − R 2  R 2  2 R 3 − R 2
 R1

(
)





Enfin, pour ρ > R 3 , on obtient :
B (ρ > R3 ) = 0
A (ρ > R 3 ) = −
R 
R
µ0 I  R 32
ln  3  + ln  2
 2
2
2π  R 3 − R 2  R 2 
 R1

 

7.
Le phénomène d'induction électromagnétique se manifeste lorsqu'on plonge un conducteur
immobile dans un champ magnétique variable (cas de Neumann). Ce phénomène apparaît dans le
conducteur mais, par ses effets, il affecte aussi l'environnement du conducteur.
8.
Le champ magnétique, variable au cours du temps, engendre un champ électrique qui est le champ
∂A
de Neumann défini par la relation : E = −
.
∂t
di ( t )
= −I0 ω sin ( ωt ) , on
Avec les résultats précédents et compte tenu que i ( t ) = I0 cos ( ωt ) , donc
dt
obtient :
µ I ω  ρ  1 
µ I ω ρ2
E ( R1 < ρ < R 2 ) = − 0 0  ln 
E ( ρ < R1 ) = − 0 0
sin ( ωt )
 +  sin ( ωt )
2
4 π R1
2π   R1  2 
E ( R 2 < ρ < R3 ) =
 ρ  R 32 − ρ2
R
µ0  2R 32
ln
+ 2 ln  2
 2

+ 2
2
2
4π  R 3 − R 2  R 2  R 3 − R 2
 R1
E (ρ > R3 ) =
R 
R
µ0  R 32
ln  3  + ln  2
 2
2
2π  R 3 − R 2  R 2 
 R1
  di ( t )
 
  dt
  di ( t )
 
  dt
Notons que les expressions de E sont celles de A dans lesquelles on a remplacé I par −
di ( t )
dt
= I0 ω sin ( ωt ) .
9.
La puissance électrique dissipée par effet Joule ne concerne que les conducteurs c'est-à-dire l'âme
et la gaine du câble coaxial.
10.
soit :
AC
La puissance instantanée dissipée par effet Joule, pour une longueur unité de câble, est :
p J ( t ) = p J,âme ( t ) + p J,gaine ( t )
3
ÉPREUVE COMMUNE DE PHYSIQUE - CORRIGÉ
R3
 R1

2

p J ( t ) = 2πγ
E ( ρ < R1 ) ρ dρ + E 2 ( R 2 < ρ < R 3 ) ρ dρ  = C sin 2 ( ωt )


R2
0

∫
∫
Il en résulte une moyenne temporelle :
PJ = p J ( t )
t
=
C
2
Équilibres de l'atmosphère terrestre.
11. Les seules forces qui agissent sur le fluide sont les forces de pression et de pesanteur. La relation
fondamentale de la statique nous conduit, le champ de pesanteur étant supposé uniforme, à :
dp ( z )
= −ρ ( z ) g
dz
Par ailleurs, la dérivée logarithmique de l'équation d'état des gaz parfaits, p ( z ) = r ρ ( z ) T ( z ) , conduit à :
1 dp ( z )
1 dρ ( z )
1 dT ( z )
=
+
ρ ( z ) dz
p ( z ) dz
T ( z ) dz
De ces deux relations on déduit :
ρ(z)
1 dρ ( z )
1 dT ( z )
g
+
= −g
=−
ρ ( z ) dz
T ( z ) dz
p (z)
r T (z)
12.
On suppose que l'atmosphère est isotherme à la température T0. On a donc :
1 dp ( z )
g
=−
p ( z ) dz
r T0
qui s'intègre en :
 gz 
p ( z ) = p ( 0 ) exp  −

 rT0 
13. On considère maintenant que l'atmosphère est en équilibre adiabatique à toute altitude. On a
p ( z ) = k ρ γ ( z ) , soit ργ−1 ( z ) = k 'T ( z ) , d'où on déduit :
dT ( z )
1 dρ ( z )
1
=
ρ ( z ) dz
( γ − 1) T ( z ) dz
En utilisant la relation
1 dρ ( z )
1 dT ( z )
g
+
=−
, on obtient :
ρ ( z ) dz
T ( z ) dz
r T (z)
dT ( z )
dz
=
1− γ g
γ r
Compte tenu que T ( 0 ) = T0 , il vient :
 1 − γ gz 
T ( z ) = T0  1 +

γ rT0 

Remarque. Les simplifications suggérées dans l'énoncé, pour cette question, ne sont d'aucune
utilité.
Diffusion thermique.
14.
En régime stationnaire la densité volumique de courant thermique, j ( r ) = j ( r ) er , est à flux
conservatif. On a donc, au niveau de toute surface sphérique de centre O et de rayon r > R :
Φ = 4πr 2 j ( r ) = Cte
AC
4
ICNA - SESSION 2008
La continuité du flux thermique à la surface de la sphère solide de centre O et de rayon R nous permet
d'exprimer la constante, soit :
4
Φ = 4πr 2 j ( r ) = πR 3 P
3
En définitive il vient :
PR 3
j( r ) = 2
3r
15.
D'après la loi de Fourier on a :
j( r ) =
PR 3
= −λ
2
dT ( r )
dr
3r
Compte tenu que lim T ( r ) = T∞ , cette relation s'intègre en :
r →+∞
T ( r ) = T∞ +
PR 3
3λr
4
Φ
. Ainsi, la résistance thermique, pour une
πR 3 P on peut écrire T ( r ) = T∞ +
3
4πλr
portion de fluide entre deux sphères concentriques de rayons r1 et r2 > r1 , est :
16.
Avec Φ =
R th =
T ( r1 ) − T ( r2 )
Φ
=
1 1 1
 − 
4πλ  r1 r2 
Évolutions d'un gaz parfait.
17.
L'état initial A du système est caractérisé par :
Mpg
TA
S
pA
Le piston étant bloqué, on met le système en contact thermique avec une source de température TS. Au
cours de la transformation il n'y a pas d'équilibre thermique puisque les températures du gaz et de la
source sont différentes : l'évolution, isochore, est donc irréversible.
Dans l'état final B on a :
T
TB = TS , p B = p A S , VB = VA
Tatm
La variation d'entropie entre les états A et B peut se calculer - l'entropie étant une fonction d'état - sur la
transformation isochore réversible qui conduit du même état initial au même état final. Avec le couple de
variables (T,V) il vient :
TA = Tatm
, p A = patm +
, VA = mr
TS
∆SAB
mr ⌠ dT
mr  TS 
=
=
ln 

γ −1 ⌡ T
γ − 1  Tatm 
T
atm
18.
Au cours de cette évolution le gaz reçoit de la source une entropie :
δQ
mr
=
T
γ
−
⌡ S ( 1) TS
Sr = ⌠

TS
mr TS − Tatm
TS
∫ dT = γ − 1
Tatm
L'entropie produite au cours de la transformation AB est donc :
mr   TS  TS − Tatm
Sp = ∆SAB − Sr =
 ln 
−
TS
γ − 1   Tatm 



On vérifie aisément que cette quantité est positive.
19. Pour que le piston reste immobile après suppression du blocage mécanique il faut déposer sur
celui-ci une masse M telle que :
Mg = S ( pB − p A )
AC
5
ÉPREUVE COMMUNE DE PHYSIQUE - CORRIGÉ
soit :

p S
 T
M =  atm + M p   S − 1
g
T

  atm

20.
( TC , VC , pC = pA ) .
Dans l'état final C le gaz est caractérisé par
L'évolution est adiabatique
irréversible donc :
∆U BC = WBC
avec :
♦ ∆U BC =
mr
( TC − TS ) car un gaz parfait suit la première loi de Joule
γ −1
♦ WBC = p A ( VB − VC ) = p A ( VA − VC ) = mr ( Tatm − TC )
Il en résulte que :
TC =
TS γ − 1
+
Tatm
γ
γ
Notons que, la transformation étant irréversible, on ne peut pas utiliser la loi de Laplace.
Optique géométrique : associations de lentilles minces.
21. La lentille mince convergente L1 donne de l'objet A1B1, placé dans son plan focal objet (A1 = F1),
une image à l'infini, réelle et renversée.
22.
L
L
1
2
On a A1 = F1 
→ A '1 = ∞ = A 2 
→ A '2 = F'2 , donc :
p '2 = f 2
Si on note α l'angle sous lequel on voit A '1 B'1 = A 2 B2 , alors on a :
tan α = −
A1B1
O1F1
=−
A '2 B'2
O2 F'2
Cette association de lentilles minces convergentes présente donc un grandissement transversal total :
A ' B'
O F'
f
( G t )total = 2 2 = 2 2 = − 2 = −1
f1
A1B1
O1F1
Notons que la lentille L2 donne de l'objet virtuel A '1 B'1 = A 2 B2 , situé à l'infini, une image réelle droite.
23. On place maintenant, dans le plan focal objet de L2, une lentille mince divergente L3, de focale f3
telle que f3 > f 2 . Dans ce cas nous avons :
L
L
L
3
1
2
A1 = F1 
→ A '1 = ∞ = A3 
→ A '3 = F '3 
→ A '2
Il en résulte que :
p3 = +∞ , p '3 = f3 < 0 , p 2 = O2 F'3 = O 2 F2 + O3 F'3 = f3 − f 2 < 0 , p '2 =
f 2 ( f3 − f 2 )
f3
>0
Notons que L3 donne d'un objet virtuel une image virtuelle renversée.
24.
Pour le montage (1) nous avons
( p '2 )2 = f 2 −
( p '2 )1 = f 2 ,
alors que pour le montage (2) nous obtenons
f 22
> f 2 . Pour visualiser l'image finale réelle il faut donc déplacer l'écran de :
f3
D1 = ( p '2 )2 − ( p '2 )1 =
f 22
= +11, 25 cm
f3
Le grandissement transversal de la lentille L2 est :
AC
6
ICNA - SESSION 2008
( G t )2 =
p '2 f 2
3
=
=−
p2
f3
4
L'image finale est renversée par rapport à l'objet A1B1.
25.
Numériquement on a :
p 2 = −35 cm , p '2 = +26, 25cm
26.
On remplace la lentille divergente L3 par une lentille convergente L4 de focale f 4 =
1
= 20 cm .
V4
Dans cette situation nous avons :
L
L
L
1
4
2
A1 = F1 
→ A '1 = ∞ = A 4 
→ A '4 = F'4 
→ A '2
La lentille convergente L4 donne de l'objet virtuel A '1 B'1 = A 4 B4 , situé à l'infini, une image réelle droite
telle que p '4 = f 4 > f 2 = F2 O 2 = O4 O 2 .
Cette image réelle sert d'objet virtuel à L2 - car p 2 = O 2 A 2 = O2 A '4 = O 2 F '4 = f 4 − f 2 > 0 - qui en donne
 f
une image réelle droite telle que p '2 = f 2  1 − 2
 f4

>0.

Notons que l'ensemble ( L2 ∪ L4 ) ne peut pas être afocal car F'4 ne coïncide pas avec F2.
27.
Pour observer l'image finale il faut déplacer l'écran de :
f2
D2 = ( p '2 )3 − ( p '2 )1 = − 2 = −11, 25cm
f4
Le grandissement transversal de la lentille L2 est alors :
p'
f
3
( G t )2 = 2 = 2 = +
p2 f4
4
L'image finale est de même sens que l'objet A1B1.
28.
On remplace la lentille convergente L4 par une autre lentille convergente L5 mais de focale
f
1
f5 =
= 10 cm = 4 .
V5
2
Dans cette situation nous avons :
L
L
L
5
1
2
A1 = F1 
→ A '1 = ∞ = A5 
→ A '5 = F'5 
→ A '2
La lentille convergente L5 donne de l'objet virtuel A '1 B'1 = A 4 B4 , situé à l'infini, une image réelle droite
telle que p '5 = f5 < f 2 = F2 O 2 = O5 O 2 .
Cette image réelle sert d'objet réel à L2 - car p 2 = O 2 A 2 = O 2 A '5 = O 2 F'5 = f5 − f 2 < 0 - qui en donne une
 f 
image virtuelle droite telle que p '2 = f 2  1 − 2  < 0 .
 f5 
Notons que l'ensemble ( L2 ∪ L5 ) ne peut pas être afocal car F'5 ne coïncide pas avec F2.
29.
Une image virtuelle ne peut pas être observée sur un écran.
Le grandissement transversal de la lentille L2 est alors :
p'
f
3
( G t )2 = 2 = 2 = +
p2
f5
2
Mouvement d'une plaque solide plane.
30.
AC
Le théorème d'Huygens nous conduit à :
7
ÉPREUVE COMMUNE DE PHYSIQUE - CORRIGÉ
2
1
a
IO = IG + M   = Ma 2
3
2
Remarque. Ce théorème n'est plus au programme des CPGE depuis 1997.
31. Pour déterminer l'équation différentielle en ϕ du mouvement de la plaque dans R0 on peut utiliser,
au choix :
♦ le théorème du moment cinétique en projection suivant l'axe de rotation ∆ = Oy ;
♦ le théorème de la puissance cinétique ;
♦ la conservation de l'énergie mécanique car, la liaison pivot étant supposée parfaite, seul le poids, qui
dérive d'une énergie potentielle, développe une puissance non nulle au cours du mouvement.
L'énergie cinétique de la plaque P dans R0 est :
1
1
E c = J O ϕ 2 = Ma 2 ϕ 2
2
6
La puissance développée par les forces extérieures se réduit à celle du poids, soit :
1
Pext = −Mg.V ( G, P / R 0 ) = Mgaϕ sin ϕ
2
dE c
Le théorème de la puissance cinétique,
= Pext , nous conduit alors, compte tenu que ϕ n'est pas
dt
identiquement nul, à :
3g
−
ϕ
sin ϕ = 0
2a
32.
L'énergie cinétique de la plaque dans R0 vient d'être calculer, soit :
1
1
E c = J O ϕ 2 = Ma 2 ϕ 2
2
6
L'énergie potentielle de pesanteur Ep est telle que :
dE p
1
Mgaϕ sin ϕ = −
2
dt
Sachant que l'énergie potentielle de référence correspond à ϕ = 0 , on en déduit :
Pext = −Mg.V ( G, P / R 0 ) =
Ep =
33.
1
Mga ( cos ϕ − 1)
2
Les positions d'équilibre de la plaque correspondent aux valeurs ϕ = ϕe telles que :
 dE p

 dϕ

1
 = − Mga sin ϕe = 0
2
ϕe
soit :
ϕe = 0 ou π
On en déduit leur nature :
 d2Ep

 dϕ 2


< 0 pour ϕe = 0 ⇒ instable
1
 = − Mga cos ϕe 

2
 > 0 pour ϕe = π ⇒ stable
 ϕe
34. Pour étudier les petites oscillations au voisinage de la position d'équilibre stable de la plaque on
linéarise l'équation différentielle obtenue à la question 31 en posant ϕ = π + ε ( ε petit ) . Il en résulte :
ε+
35.
3g
3g
+
ε = 0 ou ϕ
(ϕ − π) = 0
2a
2a
Nous avons obtenu l'équation différentielle d'un oscillateur harmonique de pulsation propre :
3g
ω=
2a
AC
8
ICNA - SESSION 2008
Le théorème de la résultante dynamique appliqué à la plaque dans R0 se traduit par :
Ma ( G, P / R 0 ) = R + Mg
avec, dans le cadre de l'approximation précédente :
a
a
eϕ − ϕ 2 e r ≈ − a ( G, P / R 0 ) = ϕ
ε e x0 = 3g ε e x0
2
2
Il en résulte que :
R = Mg ( ez0 + 3ε e x0 )
(
)
où ε ( t ) est une fonction sinusoïdale de pulsation ω.
36. On considère que l'épaisseur de la plaque est petite devant ses autres dimensions. La plaque subit,
de la part de l'eau, la poussée d'Archimède :
 beh 
Π = ρeau 
g
 cos ϕ 
ρplaque
M
M
=
=
Or, ρeau =
, il en résulte :
d
dV deab
h
Π = Mg
e z0
ad cos ϕ
On néglige la poussée d'Archimède due à l'air.
37. Le centre de poussée est le centre d'inertie du volume de fluide déplacé. Il correspond au centre de
masse du solide immergé si celui-ci est homogène. C'est évidemment le cas ici, d'où :
h
OP =
2 cos ϕ
38. L'équilibre de la plaque est réalisé lorsque le moment résultant en O des forces extérieures
appliquées est nul ce qui se traduit, en notant I le milieu du segment [CD] , par:
OI ∧ F + OG ∧ Mg + OP ∧ Π = 0
On en déduit :

Mg 
h2

 tan ϕéq
−
F=
1

2  a 2 d cos 2 ϕéq


39.
On a F = 0 et, comme la plaque n'est jamais totalement immergée, 0 ≤ ϕ < ϕlim <
cos ϕlim =
π
avec
2
h
< 1 . L'équation :
a


h2

− 1 tan ϕéq = 0
2
2
 a d cos ϕéq



nous montre qu'il y a trois positions d'équilibre qui sont :
h
ϕéq = 0, ± ϕ0 avec cos ϕ0 =
<1
a d
Si on écarte légèrement la plaque de sa position d'équilibre le moment résultant des forces appliquées, par
rapport à l'axe de rotation ∆ = ( Oy0 ) , prend la valeur :
dM ( ∆ ) =

Mga  
h2
2h 2 tan 2 ϕ 
 1 − 2
−
cos ϕ dϕ
2
2
2 




2   a d cos ϕ a d cos ϕ 
ϕéq
L'équilibre est stable si dM ( ∆ ) tend à ramener le système dans sa position d'équilibre, c'est-à-dire si
dM ( ∆ )
dϕ
Ainsi :
AC
< 0 ; dans le cas contraire l'équilibre est instable.
9
ÉPREUVE COMMUNE DE PHYSIQUE - CORRIGÉ
 Mga 
h2 

 1 − 2  > 0 pour ϕéq = 0 ⇒ instable
dM ( ∆ )  2  a d 
=
dϕ
 Mgh  a 2 d 
− 1 < 0 pour ϕéq = ±ϕ0 ⇒ stable

−

d  h 2


40.
Les résultats sont donnés dans la question précédente.
-:-:-:-:-
AC
Téléchargement