2015/2016
(Ω,A,P)
Exercice 1. (Un univers) 2n
n3,...,2n
Exercice 2. (-)A, B AA∆B∈A
Exercice 3. (Intersections d’algèbres, ♥)A1A2Ω
1. A1∩A2
2. A1∪A2
Exercice 4. (-)A B
P(A∆B) = P(A) + P(B)−2P(A∩B).
Exercice 5. (-)Ω = J1, nKP(Ω) λ k ∈J1, nK
pk=λ·k λ (p1, . . . , pn)
Exercice 6. (-)A, B ∈A
1.
P(A)−P(c
B)6P(A∩B)6min{P(A),P(B)}.
2. P(A) = 3
4P(B) = 1
3
a) 1
12 6P(A∩B)61
3
b)
Exercice 7. n∈N?p, q ∈[0,1] (Ar)r∈J1,nK
2
(r, s)∈J1, nK2r6=sP(Ar) = pP(Ar∩As) = q
p>1
nq62
n
Exercice 8. (Inégalité de Bonferroni) n∈N?(Ai)i∈J1,nK∈An
P n
[
r=1
Ar!>
n
X
r=1
P(Ar)−X
16r<k6n
P(Ar∩Ak).
Exercice 9. (Inégalité de Kounias,
!
)n∈N?(Ai)i∈J1,nK∈An
P n
[
r=1
Ar!6min
k
n
X
r=1
P(Ar)−X
r∈J1,nK\{k}
P(Ar∩Ak)
.