γ(0) = γ(1) = (1,1)
γ γ = (exp(iθ1(u)),exp(iθ2(u)))
k1k2θ1(1) = 2k1π;θ2(1) = 2k2π
A
A
t= 1/2
A(γ2)γ1
A(γ1γ2) = A(γ1) + A(γ2)
A(γ1) = A(γ2)
F F
η|(u1, t1)−
(u2, t2)| ≤ η⇒ |F(u1, t1)−F(u2, t2)| ≤ 1n
η fi
F(u, ti)ti
A(fi) = A(fi+1)|fi(u)−fi+1(u)|=|F(u, ti)−
F(u, ti+1)| ≤ 1fi(u) = (exp(iθi1(t)),exp(iθi2(t)))
fi+1 |exp(iθi1(u))−exp(iθ(i+1)1(u))| ≤ 1⇒ | sin(θi1(u)−θ(i+1)1(u)
2| ≤
1/2
A(fi)6=A(fi+1)π
F
A(f0) = A(fn)
A(γ1) = A(γ2)
A(γ1) = A(γ2)γ1= (exp(iθ1),exp(iτ1))); γ2=
(exp(iθ2),exp(iτ2))) H(u, t) = (exp(i(tθ1(u))+(1−t)θ2(u)),exp(i(tτ1(u))+
(1 −t)τ2(u)))
b
A[γ]A(γ)
b
A
(exp(u∗2iπk1),exp(u∗
2iπk2)) (k1, k2)b
A([γ1][γ2]) = b
A([γ1γ2]) =
A(γ1γ2) = A(γ1) + A(γ2) = b
A([γ1]) + b
A([γ2])
γ γ γ