π
C2πf
2π
∀α∈R,∀f∈ C2π, f([α, α + 2π]) = f([0,2π]) = f(R)
C2π
f7→ sup
[0,2π]
|f|=||f||[0,2π]
∞C2π
||f||∞
nZen:t7→ eint = (eit)n||en||∞= 1
g:t7→ cos(t) + sin(t)C2π||g||∞
C2π
∀(f, g)∈ C2
2π,⟨f, g⟩=1
2π2π
0
f(t)g(t)dt
||f||2=1
2π2π
0
|f(t)|2dt ||f||2≤ ||f||∞
f∈ C2π
∀t∈[−π, π], f(t) = |t| ∥f||2
∀(n, p)∈Z2,⟨en, ep⟩=1
2π2π
0
e−inteiptdt =δn,p
p∈NV ect(ep, e−p+1, ..., e1, e0, e1, ..., ep)
2p+ 1 Pp
P0⊂P1⊂... ⊂Pp⊂Pp+1 ⊂...
t7→ cos(t) + 2 sin(3t)P3
f N ∈N
f∈PNf N ∈N
(αk)−N≤k≤N∈C2N+1 ∀t∈R, f(t) =
N
k=−N
αkeikt
Pp
f∈ C2πPpf
PpSp(f) =
k=p
k=−p
⟨ek, f⟩ekPp