cos3xsin(2x)3 cos(3x) cos xsin x
Sn=
n
X
k=0
eikx Sn=ein
2xsin(n+1
2x)
sin(x
2)
2 cos x1
3sin(4x)
eix e2ix + 5
2
+
X
k=1
1
k2(cos(kx)sin(kx))
+
X
k=1
1
2kcos(kx) + eikx
xR\2πZS(x) =
+
X
k=0
coskx
S
+
X
k=1
cos(kx)
k·2kz=re
ln(z) = ln(r) +
f:RR2π
f(x) = 1π < x 0
1 0 < x π.
f k ak(f)=0 bk(f) =
2
πZπ
0
f(t) sin(kt)dt
f f
f S0(x)S2(x)S4(x)
f
f:RR2π f(x) = x x [π, π[
f
f f
+
X
k=1
1
k2
f g
R R 2π
f(x)g(x)x[0, π]
f g f g
f:RR2π1x2
π2[π, π]
akbkf
X
k=1
1
k2
X
k=1
(1)k
k2
X
k=1
1
k4
0π
k0
π
1
f
0π/2π
1
g
f:RR2π f(x) = ch x x [π, π[
f
f f
+
X
k=1
1
k2+ 1
+
X
k=1
(1)k
k2+ 1
f:RRf(x) =
sin(nx)
f
f
uC(t)e(t)τ=RC
e(t) = et
uC(t)uC(t)
e(t) = f(t)f uC(t)
e(t)uC(t)
uC(t)e(t)τ=RC
e(t) = et
uC(t)uC(t)
e(t) = g(t)g
uC(t)e(t)uC(t)
e(t)
R
i(t)
CuC(t)e(t)
R
i(t)
C
L
uC(t)
1 / 3 100%