De nouveaux nombres
les racines carrées
1/ Découvrons et créons …
En classe, nous avons réussi à démontrer l'existence d'un car
dont l'aire vaut 2 unités d'aire.
Ce carré existe donc ... son côté est mesurable et il mesure
environ :
1,41421356237309 unité de longueur
Pourtant, nous n'avons pas réussi à connaître la valeur exacte,
décimale ou fractionnaire, de cette mesure. De plus, nous avons
pu prouver que cette valeur n'est ni décimale, ni fractionnaire.
Comment faire pour nommer et écrire cette mesure ?
L'idée est donc de créer un nouveau symbole pour ce nouveau
nombre :
2
qui se prononce racine carrée de 2 en référence à la figure du
carré, d'aire 2 dont nous cherchons le côté.
Ainsi, 2 est la mesure du côté du carré d'aire 2.
Par conséquent :
2 ×2 = 2
2/ Généralisons …
Si 2 est la mesure du côté du carré d'aire 2, il est aisé de
généraliser la racine carrée à d’autres carrés. Ainsi :
2 est la mesure du côté du carré d'aire 3.
4 est la mesure du côté du carré d'aire 4 et,
4 = 2 car 2 × 2 = 4.
5 est la mesure du côté du carré d'aire 5.
9 est la mesure du côté du carré d'aire 4 et,
9 = 3 car 3 × 3 = 9.
Ainsi, la racine carrée d’un nombre qui est un carré parfait (4, 9, 16,
25, 36 …) est un nombre entier. Par exemple :
1 = 1
4 = 2
9 = 3
16 = 4
25 = 5
36 = 6
49 = 7
64 = 8
81 = 9 …
3/ Calculons …
Des règles particulières existent pour effectuer des calculs avec
ces nouveaux nombres. Ainsi, il est indispensable de savoir que :
a + b a + b
a - b a - b
a × b = a × b
a
b
= a
b!
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !