LES NOMBRES DECIMAUX
I Nombres décimaux, fractions décimales.
1) Définition
Un nombre décimal s’écrit avec des chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8 et 9) et une virgule.
Sa partie décimale contient un nombre fini de chiffres.
La position d’un chiffre détermine sa signification: 18,5 et 81,5 sont deux nombres différents.
PARTIE ENTIERE
PARTIE DECIMALE
Millions
Centaines
de mille
Dizaines
de mille
Unités
de milliers
Centaines
Unités
Dixièmes
Centièmes
Millièmes
Dix millièmes
Cent millièmes
millionièmes
×1000
×100
×1
×1
10
×1
100
×1
1000
3
2
7
9
4
3 est le chiffre des unités de mille / 2 est le chiffre des centaines
5 celui des dizaines / 7 celui des unités / 9 est le chiffre des dixièmes et 4 est le chiffre des centièmes.
3 257,94 = (3 × 1000) + (2 × 100) + (5 × 10) + (7 ×1) + 9
10 + 4
100.
Ce nombre se lit : trois mille deux cent cinquante-sept virgule quatre-vingt-quatorze.
Remarques importantes :
a) On peut ajouter ou supprimer autant de zéros que l’on veut à droite de la partie décimale et on peut ajouter ou
supprimer autant de zéros que l’on veut à gauche de la partie entière.
12,45 = 12,45000 379,08 = 00379,08
b) Un nombre entier est un nombre décimal particulier, sa partie décimale est nulle.
579 = 579,0 = 579,000 = …….
2) Définition
Une fraction décimale est une fraction dont le dénominateur est égal à 1, ou 10, ou 100, ou 1000 ….
Exemples 72
10 578
1 23
1000
3) Propriété
Tout nombre décimal peut s’écrire sous la forme d’une fraction décimale.
Exemples 4,035 = 4035
1000 876 = 876
1
II La demi-droite graduée.
1) Définition
Une demi - droite graduée est une demi - droite sur laquelle on a choisi une origine (un point O) et une unité
que l’on reporte régulièrement.
Exemple : L’origine O est le point et l’unité est le cm.
2) Propriété
Sur une demi- droite graduée chaque point peut être repéré par un nombre que l’on appelle abscisse de ce
point. L’abscisse de l’origine O est zéro, celle de A est 2.
On écrit A (2) pour dire que l’abscisse du point A est égale à 2.
1) L’abscisse du point D est 1,1. 2) L’abscisse du point B est …….
3) Placer le point C d’abscisse égale à 2,05.
III Comparaison des nombres décimaux
1) Définition :
Comparer deux nombres décimaux, c’est indiquer lequel est le plus petit ou lequel est le plus grand ou bien dire
s’ils sont égaux.
Exemples : a) 12 < 32,4 b) 101,14 > 20,98 c) 3,5 = 3,500
Comparons 5,41 et 5,407
Les parties entières sont égales, on examine les parties décimales.
Les chiffres des dixièmes sont égaux. On compare les chiffres des centièmes.
Et on a donc 5,407 < 5,41.
2) Définitions
Ranger une suite de nombres dans l’ordre croissant, c’est les ranger du plus petit au plus grand.
Ranger une suite de nombres dans l’ordre décroissant, c’est les ranger du plus grand au plus petit.
Exemple : 1,253 < 1,28 < 3,45 < 4 < 6,175 < 6,3.
3) Définition
Encadrer un nombre c’est trouver un nombre qui lui est plus petit et un autre qui lui est plus grand.
O
0
1
2
3
4
5
A
B
1
D
1,1
2
Exemple Encadrer 17,45 :
a) 17 < 17,45 <18. Encadrement à l’unité car 1817 = 1
b) 17,4 < 17,45 < 17,5.Encadrement au dixième car 17,517,4 = 0,1
c) 17,44 < 17,45 < 17,46.
Encadrement aux deux centièmes car 17,46 17,44 = 2
100 = 0,02.
IV Troncature et arrondi à l’unité
1) La partie entière d’un nombre décimal s’appelle aussi troncature à l’unité.
Pour l’obtenir, il suffit de couper le nombre au niveau de sa virgule.
Exemple : La troncature à l’unité de 15,754 est 15.
2) L’arrondi à l'unité d’un nombre décimal est le nombre entier le plus proche de ce nombre décimal.
Pour l’obtenir il suffit de comparer le chiffre des dixièmes avec 5.
Exemples : a) L’arrondi à l’unité de 7,81 est 8 car 8 est plus proche de 7,81 que 7.
Le chiffre des dixièmes, 8, est plus grand que 5.
b) L’arrondi à l’unité de 26,253 est 26 car le chiffre des dixièmes, 2, est plus petit que 5.
c) 3,5 est aussi proche de 3 que de 4.
On conviendra de dire dans ce cas que l’arrondi à l’unité de 3,5 est 4.
7,7
7,8
7,9
8
8,1
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !