Résumé Statistiques 2nde 4 1/3
1 Vocabulaire
Le but d’une étude statistique est de recueillir des données, de les classer, de faire une représentation graphique (diagramme en
bâtons ou histogramme par exemple) de faire des calculs (moyenne, écart-type . . .) et éventuellement de faire des prévisions
Tableau d’effectifs
Exemple : Le tableau ci-dessous représente les notes obtenues par les élèves
d’une classe à un contrôle :
Note (xi) 7 9 11 12 15
Effectif (ni) 3 5 8 10 4
La population est l’ensemble des élèves de la classe
Le caractère étudié est la note à un contrôle, ce caractère est quantitatif (on peut le mesurer avec un nombre)
Les nombres (xi) sont les différentes valeurs du caractère ici : x1=7x2=9x3=11 x4=12 x5=15
Les nombres (ni) sont les effectifs des différentes valeurs du caractère. Ceci se traduit par :
Il y a 3 élèves qui ont eu 7 , 5 élèves qui ont eu 9, 8 qui ont eu 11, 10 qui ont eu 12 et 4 qui ont eu 15
Leffectif total est N =
5
X
i=1
ni=n1+n2+n3+n4+n5=30
Remarque : On rencontre parfois des tableaux d’effectifs où les valeurs sont regroupées en classe (des intervalles)
Tableau des effectifs cumulés croissants
Il y a 3 élèves qui ont eu une note inférieure ou égale à 7, 8 élèves qui ont eu
une note inférieure ou égale à 9, 16 élèves qui ont eu une note inférieure ou
égale à 11, etc...
(On retrouve en dernière colonne l’effectif total)
Note É(xi) 7 9 11 12 15
Effectif (ni) 3 8 16 26 30
Tableau des effectifs cumulés décroissants
(On retrouve en première colonne l’effectif total) Note Ê(xi) 7 9 11 12 15
Effectif (ni) 30 27 22 14 4
Fréquence
La fréquence fid’une valeur du caractère xiest le rapport entre l’effectif de cette valeur et l’effectif total fi=ni
N
Une fréquence est un nombre compris entre 0 et 1. La somme des fréquences égale 1.
5
X
i=1
fi=f1+f2+f3+f4+f5=1
Mode le mode est la valeur du caractère qui a le plus grand effectif.
Etendue L’étendue est la différence entre la plus grande valeur et la plus petite valeur du caractère.
2 Représentation
Selon le type du caractère de la série statistique, on choisira :
Un diagramme en bâtons :
en abscisse les valeurs du caractère,
en ordonnéee l’effectif
Un histogramme :
Lorsque les valeurs du caractère sont regroupées en inter-
valles.
On dessine des rectangles qui ont pour base l’intervalle et qui
ont une hauteur telle que l’aire du rectangle est proportion-
nelle à l’effectif.
Résumé Statistiques 2nde 4 2/3
Un diagramme circulaire :
l’effectif de chaque valeur est représenté par un angle proportionnel à cet effectif.
L’effectif total est alors représenté par 360pour les diagrammes circulaires et 180pour
les diagrammes semi-circulaires
3 Moyennes
On considère une série statistique dont les N valeurs sont données par x1,x2. .. x5, d’effectifs associés n1,n2,...n5
La moyenne est : x=n1x1+n2x2+n3x3+n4x4+n5x5
n1+n2+n3+n4+n5=
5
X
i=1
ni×xi
N=3×7+5×9+8×11 +10 ×12 +4×15
30 11,1
Si on connait les fréquences, la moyenne est x=f1×x1+f2×x2+···+ f5×x5=
5
X
i=1
fi×xi
Définition
La note moyenne de la classe au contrôle est donc de 11,1 environ
Lorsque les valeurs sont regroupées en classe (des intervalles) on choisit pour valeur xile centre de chaque intervalle.
4 Médiane Quartiles
La médiane est un nombre qui partage la population en deux parties de même effectif. La moitié des valeurs du caractère sont
inférieures à la médiane et la moitié des valeurs sont supérieures à la médiane.
Dans la pratique on procède ainsi :
On range les valeurs par ordre croissant :
S’il y a un nombre impair de valeurs (2n+1 valeurs) La médiane est la valeur de rang n+1
(c’est celle qui est au milieu)
S’il y a un nombre pair de valeurs (2nvaleurs) la médiane est la moyenne entre la valeur de rang net celle de rang n+1
(On fait la moyenne entre les deux valeurs situées au milieu)
Définition
De même on peut définir les quartiles qui séparent la population en quatre parties
Le premier quartile Q1est la plus petite valeur qde la série telle qu’au moins 25% des données soient inférieures ou égales à q
Le troisième quartile Q3est la plus petite valeur q0de la série telle qu’au moins 75% des données soient inférieures ou égales à q0
Le premier décile D1est la plus petite valeur qde la série telle qu’au moins 10% des données soient inférieures ou égales à q
Le neuvième décile D9est la plus petite valeur q0de la série telle qu’au moins 90% des données soient inférieures ou égales à q
On peut ensuite tracer une boîte à moustaches
Résumé Statistiques 2nde 4 3/3
5 Pourcentages
Rappel :
Pour augmenter un nombre de t%, on le multiplie par µ1+t
100
Pour diminuer un nombre de t%, on le multiplie par µ1t
100
6 Intervalle de fluctuation
Si on lance un dé non truqué, la probabilité d’obtenir un six est de 1/6, pourtant si on le lance 120 fois, il sera assez rare de tomber
exactement 20 fois sur le six, c’est-à-dire d’obtenir une fréquence d’apparition du six de 20
120 =1
6.
On dit que la fréquence fluctue autour de 1/6. On appelle ce phénomène, fluctuation de la fréquence.
Cependant on a le résultat suivant :
Lorsque l’on prélève un échantillon de taille ndans une population où la fréquence d’un caractère est palors sous réserve
que nÊ50, np Ê5 et n(1 p)Ê5, la probabilité que cet échnatillon fournisse une fréquence appartenant à l’intervalle
·p1
pn;p+1
pn¸est au moins égale à 0,95
L’intervalle est appellé intervalle de fluctuation de la fréquence fau seuil de 95%
Propriété
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !