#
R
ARa
A
A A ={x1, x2, . . . , xn, . . .}
xn−n→ ∞− > a
(sin(n)) [−1,1]
a∈R\QA={ma +n m ∈Z, n ∈N}AR
[−1,1] (sin n)
√m−√n
A={√m−√n m, n ∈N}R
A={n+p√2n, p ∈N, n +p√2>0, n2−2p2= 1}A
R+∗
a > 1 (xn)∀i6=j, |xi−xj| ≥ 1
|i−j|a
un+1 −un>0
(un)un+1 −un−n→ ∞− >0
(un)
un+1 −un>0
f: [0,1] −→ [0,1] u0∈[0,1] (un)f u0
un+1 −un−n→ ∞− >0 (un)
f
exp(iun)
(un) (exp(iun)) (|un+1 −un|)
α < π (un)
exp(iun)
(un)un+1 −un−n→ ∞− >0un−n→ ∞− >+∞
(exp(iun)) U
exp(iun)
(xn)u > 0, v > 0u
v/∈Q(eiuxn)
(eivxn) (xn)
un+p≤un+up
(un)∀n, p ∈N, un+p≤un+upun
n