Des données statistiques ont permis d`établir la loi de probabilité

Probabilités
I. Loi de probabilité
1. Loi de probabilité sur un ensemble fini
Définition
Soit E={ }
e1 ;e2 ; ;en l’ensemble des issues d’une expérience aléatoire. Définir une loi de probabilité P sur E, cest
associer à chaque issue ei un réel pi tel que 0ÂpiÂ1 et p1+p2++pn=1.
Loi équirépartie
Lorsque les n événements élémentaires de E ont la même probabilité
Error!
, on dit qu’on est dans une situation
d’équiprobabilité sur E et que la loi de probabilité sur E est équirépartie.
Le choix de cette loi peut être influencé par des expressions telles que « bien équilibré », « non truqué », « au hasard »,
« indiscernables au toucher », …
2. Modélisation d’une expérience aléatoire
Définition
Modéliser une expérience aléatoire, c’est préciser l’ensemble E de ses issues et choisir une loi de probabilité sur E.
Exemple
On lance une pièce de monnaie et on note la face obtenue.
On peut envisager, par exemple, les modèles suivants :
Modèle A
Issue
P
F
ou
Modèle B
Issue
P
F
Probabilité
0,5
0,5
Probabilité
0,75
0,25
Loi des grands nombres
Pour une expérience donnée, dans le modèle défini par une loi de probabilité P, les distributions des fréquences
calculées sur des séries de taille n se rapprochent de P quand n devient grand.
Autrement dit, pour valider ou rejeter un modèle, on peut réaliser une étude statistique en répétant ou en simulant l’expérience
un grand nombre de fois. On compare alors la loi de probabilité du modèle avec la distribution des fréquences observées.
Exemple
Dans le cas du lancer de la pièce de monnaie, si celle-ci est parfaitement équilibrée, la simulation de l’expérience précédente
devrait permettre de valider le modèle A.
3. Caractéristiques d’une loi de probabilité
Définition
On suppose que les issues e1, e2, …, en d’une expérience aléatoire sont des nombres réels et qu’une loi de probabilité est
définie sur l’ensemble E de ces issues.
L’espérance de cette loi de probabilité est le réel E= p1e1+p2e2++pnen
Sa variance est le réel positif V=p1( )
e1E2+p2( )
e2E2++pn( )
enE2=p1e12+p2e22++pnen2E2
Son écart type est σ=V
Exemple
On choisit au hasard une famille parmi les familles de 3 enfants et on note le nombre de filles.
Des données statistiques ont permis d’établir la loi de probabilité suivante :
0
1
2
3
1/8
3/8
3/8
1/8
Alors E=1,5, V=0,75 et σ=
Error!
=
Error!
ó0,87
II. Calculs de probabilités
1. Probabilité d’un évènement
Définition
La probabilité d’un événement A, notée p(A), est la somme des probabilités de tous les événements élémentaires qui
composent l’événement A.
Probabilités
Propriété
Dans une situation d’équiprobabilité, la probabilité d’un événement A est :
p(A)=
Error!
=
Error!
.
2. Réunion et intersection d’évènements
Définitions
La réunion de deux événements A et B est notée AB.
Elle est constituée des issues qui appartiennent à A ou à B.
L’intersection de deux événements A et B est notée AB.
Elle est constituée des issues qui appartiennent à A et à B.
Exemple
On lance un dé ordinaire et on note le numéro porté par la face supérieure.
Soient les événements A « obtenir un nombre pair » et B « obtenir un nombre supérieur ou égal à 3 ».
A={2 ;4 ;6} et B={3 ;4 ;5 ;6} donc AB={2 ;3 ;4 ;5 ;6} et AB={4 ;6}
Propriété
Pour tous les évènements A et B : p(AB)+p(AB)=p(A)+p(B).
3. Evènement contraire
Définition
L’événement contraire d’un événement A est noÒ;A ; il est constitué de toutes les issues n’appartenant pas à A.
Exemple
On lance un dé ordinaire et on note le numéro porté par la face supérieure.
Soit A l’évènement « obtenir un nombre pair » alors A={2 ;4 ;6}.
Ò;A={1 ;3 ;5} : Ò;A est l’évènement « obtenir un nombre impair ».
Propriété
Pour tout évènement A, p(A)+p( )
Ò;A=1.
III. Variables aléatoires
1. Variable aléatoire
Définition
Soit E l’ensemble des issues d’une expérience aléatoire.
Une variable aléatoire discrète définie sur E est une fonction X qui à chaque issue de E associe un nombre réel.
Soit x un réel, l’évènement « X prend la valeur x », noté (X=x), est constitué des issues dont l’image est x.
Exemple
Un joueur mise 2 € et lance un dé parfait : s’il obtient un carré parfait, il gagne 7 €, sinon il ne gagne rien.
On considère l’expérience aléatoire qui consiste à lancer le dé et à noter le résultat.
L’ensemble des issues est E={1 ;2 ;3 ;4 ;5 ;6}.
Le gain algébrique du joueur définit une variable aléatoire X sur E qui prend les valeurs -2 et 8.
L’évènement (X=7) est réalisée par les issues 1 et 4.
2. Loi de probabilité d’une variable aléatoire
Définition
Déterminer la loi de probabilité d’une variable aléatoire X, c’est :
1. Donner l’ensemble { }
x1 ;x2 ; ;xk des valeurs prises par X ;
2. Déterminer pour chaque xi la probabilité de l’évènement ( )
X=xi notée p( )
X=xi.
Probabilités
Exemple
Dans l’exemple précédent, comme le dé est parfait, il y a équiprobabilité sur E={1 ;2 ;3 ;4 ;5 ;6}.
(X=-2)={2 ;3 ;5 ;6} donc p(X=-2)=
Error!
=
Error!
(X=7)=
Error!
donc p(X=7)=
Error!
=
Error!
.
On en déduit la loi de probabilité de X :
3. Espérance, variance et écart-type d’une variable aléatoire
Définition
L’espérance, la variance et l’écart type d’une variable aléatoire sont respectivement l’espérance, la variance et l’écart
type de la loi de probabilité de X.
On les note respectivement E(X), V(X) et σ(X)
Exemple
Dans l’exemple précédent, E(X)=
Error!
×(-2)+
Error!
×7=1 : en jouant un grand nombre de fois, un joueur peut espérer
gagner 1 € en moyenne.
V(X)=
Error!
×
Error!
+
Error!
×
Error!
Error!
=18 donc σ(X)=
Error!
ó4,24 (euros)
Remarque
Lorsque l’espérance est nulle, on dit que le jeu est équitable.
xi
-2
7
p( )
X=xi
Error!
Error!
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !