Inhibiteurs de mTOR : de la transplantation à l`oncologie

publicité
u MISE AU POINT
Progrès en Urologie (2007), 17, 928-933
Inhibiteurs de mTOR : de la transplantation à l'oncologie
(Revue de la littérature du Comité de Transplantation - AFU 2006)
Yann NEUZILLET (1), Georges KARAM (2), Eric LECHEVALLIER (1), François KLEINCLAUSS (3)
et le Comité Transplantation de l'Association Française d'Urologie
(1)
Service d'Urologie et Transplantation Rénale, C.H.U. de la Conception, Marseille, France, (2) Institut Uro-Néphrologie, C.H.U., Hôtel Dieu,
Nantes, France, (3) Service d'Urologie et Transplantation Rénale, C.H.U. Saint-Jacques, Besançon, France
RESUME
L'histoire des inhibiteurs de mTOR a débuté il y a environ 30 ans par la découverte de la rapamycine, macrolide issu d'un micro-organisme téllurique Streptomices hygroscopicus et doté de propriétés antibiotiques, immunosuppressives et antiproliférative.
Prévu initialement pour être un antibiotique, la compréhension de plus en plus précise du mode d'action de cette
classe médicamenteuse a rationalisé et validé son emploi dans le domaine de la transplantation et de l'oncologie.
Dans ces deux domaines, où l'urologue est partie prenante, de nombreuses études cliniques sur les inhibiteurs
de mTOR ont été menées.
Cette mise au point synthétise les connaissances actuelles sur le mécanisme d'action et les utilisations cliniques
des inhibiteurs de mTOR en transplantation rénale et en oncologie.
Mots clés : immunologie, cancer, transplantation, inhibiteur de mTOR.
ne : mTOR ou mammalian Target Of Rapamycin [4].
En 1975, dans le cadre d'un programme de recherche de nouveaux
antibiotiques des laboratoires pharmaceutiques Ayerst, VENISA a
isolé à partir de streptomyces hygroscopicus, une bactérie tellurique
de l'Ile de Paques, une molécule de la famille des lactones macrocyclique possédant une activité antibiotique. Le nom polynésien de
l'Ile de Pâques étant Rapa Nui, ils nommèrent leur découverte rapamycine. Les propriétés antibiotiques de la rapamycine étaient en
fait modeste in vitro, hormis une activité antifongique sur le candida albicans. En raison de son activité antimicrobienne faible, le projet fut officiellement abandonné par les laboratoires Ayerst. Seul
SEGHAL convaincu des propriétés immunosuppressive de cette
molécule poursuivra son étude. Ainsi, en l'administrant à des rats,
MARTEL a montré que cette molécule était capable d'inhiber la
réponse immunitaire. En 1983, HOUCHENS, en démontrant que la
rapamycine pouvait inhiber la croissance de xénotransplanstation
de tumeur cérébrale humaine a publié la première description de
l'effet antitumoral de la rapamycine. En 1989 les premiers résultats
de l'utilisation de la rapamycine comme immunosuppresseur dans
des modèles expérimentaux d'allotransplantations chez l'animal ont
été rapportés par CALNE dans le Lancet [1]. La première administration chez l'homme interviendra en 1991 chez un receveur d'une
allotransplantation rénale.
Le but de cette mise au point est d'exposer de façon synthétique le
mode d'action des inhibiteurs de mTOR puis, à la lumière de ces
connaissances, leurs développements cliniques en transplantation
rénale et en oncologie.
MODE D'ACTION DES INHIBITEURS DE MTOR
La protéine mTOR est une sérine-thréonine kinase c'est-à-dire
qu'elle catalyse, lorsqu'elle est activée, la phosphorylation de deux
acides aminés sérine et thréonine sur des protéines cibles intra-cellulaires. L'activation de mTOR se fait par sa phosphorylation :
- Soit à partir de l'activation d'un récepteur de facteur de croissance
(par exemple le récepteur CD25 à l'IL-2) entraînant une cascade
de phosphorylation par la voie de la phosphoinositide 3-kinase
(PI-3K) et Akt. Cette voie est physiologiquement régulée par la
phosphatase “Phosphatase and Tensin Homologue deleted on
chromosome Ten” (PTEN).
- Soit par les kinases dépendant de l'AMP (AMPK) dont l'activation
dépend du ratio des concentrations intra-cellulaires en AMP et
ATP. Cette voie est physiologiquement interrompue lors de stress
cellulaire ou de dépression en nutriment (acides aminés) car ces
situations aboutissent à une accumulation d'AMP intra-cellulaire.
Cependant à cette époque, le mécanisme d'action de la rapamycine
n'était pas encore clairement défini. Les équipes de recherche ont
montré que la rapamycine partageait la même molécule de liaison
que le tacrolimus mais que leurs propriétés immunosuppressives
étaient différentes, sous-entendant que les complexes ainsi formés
n'interagissent pas avec les mêmes cibles Au début des années 90 la
FKBP12, immunophiline de liaison commune au FK506 et à la
rapamycine a été séquencée et son gène identifié [2]. L'effet du
complexe FKBP12-rapamycine au sein de la cellule a été précisé
par MORICE et par JAMARAMAN en 1993 [3] mais l'élucidation du
mode d'action de la rapamycine n'a été présenté par WIEDERRECHT
qu'en 1995 avec la découverte de la protéine cible de la rapamyci-
- Soit par les acides aminés, via une interaction avec le complexe
“Tuberous Sclerosis Complex” (TSC) dont les mécanismes ne
sont pas entièrement déterminés.
Manuscrit reçu : mars 2007, accepté : juin 2007
Adresse pour correspondance : Dr. Y. Neuzillet, 280 boulevard Michelet, Le Corbusier,
Appartement 202, 13008, Marseille, France
e-mail :
Ref : NEUZILLET Y., KARAM G., LECHEVALLIER E., KLEINCLAUSS F.
Prog. Urol., 2007, 17, 928-933
928
Y. Neuzillet et coll., Progrès en Urologie (2007), 17, 928-933
Une fois activée, mTOR phosphoryle :
La p34cdc2, dont la phosphorylation permet sa liaison à la cycline
E, sa migration intranucléaire et ainsi la protéolyse de p27 qui est
une protéine frénatrice du cycle cellulaire. Elle inhibe la progression du cycle de la phase G1 à S par une action inhibitrice sur les
“cyclin-dependent protein kinase” (cdk) , nécessaire au passage en
phase S) et sur l'eIF-4E, inhibiteur de l'apoptose et régulateur de la
traduction de l'ARN messager en protéines, dont celles nécessaire à
la progression du cycle cellulaire.
La p7056k, sérine-thréonine kinase qui phosphoryle la protéine
ribosomale 40S S6. Le recrutement de S6 ainsi provoqué permet la
traduction des ARN messagers en protéines.
Au total l'activation de mTOR aboutit à la progression du cycle cellulaire de la phase G1 à S et donc à la prolifération cellulaire.
La rapamycine une fois liée au FKBP12 est un inhibiteur de la
mTOR. Elle interrompt donc la transduction des signaux mitogènes
par l'inhibition des cyclines nécessaires au passage de la phase G1
à S et par l'inhibition de la synthèse des protéines nécessaires à la
progression du cycle cellulaire. L'inhibition de mTOR aboutit donc
au blocage du cycle cellulaire en phase G1 (Figure 1)
Figure 1. Mode d'action des inhibiteurs de mTOR.
APPLICATIONS
Dans le cas du lymphocyte T CD4, principal acteur de la réponse
immunitaire, ces données s'intègrent dans le modèle des 3 signaux
de la réponse alloimmune (Figure 2). Selon ce modèle, le premier
signal naît de la reconnaissance spécifique du peptide associé à un
antigène du complexe majeur d'histocompatibilité (HLA), présenté
par une cellule présentatrice d'antigène, par le récepteur du lymphocyte T (TCR). Ce signal aboutit à la production d'interleukine 2
(IL-2) via une cascade de phosphorylation générée par CD3 et
recrutant les protéines ZAP70 et PLC, à l'augmentation de la
concentration intra-cellulaire en calcium, à l'activation de la calcineurine et ainsi à la translocation nucléaire de facteur de transcription. Le second signal, ou signal de co-stimulation nécessaire pour
activer le lymphocyte, correspond à des interactions moléculaires
de surface entre la cellule présentatrice d'antigène et le lymphocyte
T. Ce second signal n'est pas spécifique de l'antigène et fait notamment intervenir des voies de la superfamille des Immunoglobulines
et des voies de la famille du TNF/TNF-R. Ces deux signaux aboutissent à la synthèse autocrine ou paracrine d'interleukine 2 (IL-2).
Le troisième signal correspond à la fixation de l'IL-2 sur son récepteur. Le récepteur à l'IL-2, comprenant la molécule CD25, n'est présent qu'à la surface des lymphocytes activés. Il provoque une cascade de phosphorylation recrutant les protéines PI-3K et Akt puis
mTOR et aboutit donc à la prolifération lymphocytaire.
Figure 2. Modèle de la réponse immune entre un lymphocyte T4 et
une cellule présentatrice d'antigène et implication des inhibiteurs de
mTOR.
veaux inhibiteurs de mTOR aux caractéristiques pharmacocinétiques et pharmacodynamiques optimisées et la découverte de nouvelles molécules aux noms parfois prédisposés tel raptor, rictor
etc... L'everolimus (RAD001) et le temsirolimus (CCI-779) ont
ainsi été développés et testés dans des essais cliniques.
DEVELOPPEMENT EN TRANSPLANTATION RENALE
L'utilisation de la rapamycine dans des modèles animaux a permis
de montrer une efficacité dans la prévention du rejet d'allotransplantation [5] au prix de peu d'effets secondaires, notamment
néphrotoxiques [6]. Les travaux de SCHUURMAN [7] et STEPKOWSKI
[8] ont montré l'effet synergique de l'association des inhibiteurs de
mTOR et des inhibiteurs de calcineurine. Les premiers essais cliniques utilisant la rapamycine en tant qu'immunosuppresseur ont
débuté en 1991 et en 1999 la “Food and Drug Administration” a
approuvé l'utilisation de la rapamycine en association avec la
ciclosporine et les corticoïdes en prévention du rejet après
transplantation rénale. En 2001, l'utilisation de la rapamycine en
traitement d'entretien après transplantation rénale est autorisée en
cas de contre indication à la ciclosporine.
Les inhibiteurs de mTOR bloquent donc spécifiquement le 3e
signal. Ils agissent uniquement sur les lymphocytes T activés. Ils
n'inhibent pas le premier signal (contrairement aux inhibiteurs de la
calcineurine) qui entre en jeu dans le mécanisme d'induction de
tolérance immune.
Les cellules malignes peuvent présenter des mutations des gènes de
PTEN, PI-3K, Akt ou AMPK, aboutissant à l'activation dérégulée
de mTOR et ainsi à une prolifération cellulaire.
Les inhibiteurs de mTOR permettent dans ces cas d'interrompre la
transmission du signal anormal.
On retrouve dans la littérature 33 essais cliniques randomisés rapportés dans 142 articles ou communications (soit 7114 patients
La connaissance du mode d'action de la rapamycine et notamment
ses ligands FKBP12 et mTOR, a permis le développement de nou929
Y. Neuzillet et coll., Progrès en Urologie (2007), 17, 928-933
des troubles lipidiques chez les patients traités par everolimus [9].
L'everolimus utilisé à la place du mycophenolate mofetil a permis
une diminution de l'incidence des infections à CMV [9].
transplantés rénaux) analysant quatre grandes stratégies d'utilisation de la rapamycine [9] en transplantation rénale:
La rapamycine remplace les anticalcineurines
Un nouveau bénéfice à l'utilisation des inhibiteurs de mTOR pourrait être envisagé. En effet, l'étude rétrospective de 33249 patients
du registre américain de l'United Network for Organ Sharing
(UNOS) par KAUFFMAN a montré une réduction du risque de cancer
post-transplantation en cas de traitement immunosuppresseur d'entretien par inhibiteur de mTOR [10] avec en particulier une incidence de cancer solide de 0% chez les patients recevant un inhibiteur de mTOR. Le bénéfice en termes de réduction du risque néoplasique post-transplantation pourrait faire pencher la balance en
faveur de l'emploi des inhibiteurs de mTOR en transplantation
rénale, en particulier chez les patients transplantés à risque ou avec
des antécédents de néoplasie.
Huit essais cliniques recensant 750 patients au total avec un recul
moyen de 2 ans ont été publiés [9]. Le remplacement des anticalcineurines par la rapamycine n'a modifié ni la mortalité des patients
ni la perte de greffon par rejet aigu. En revanche, il a permis une
amélioration de la fonction rénale (créatininémie et taux de reprise
retardé de fonction rénale inférieurs) au prix cependant d'effets
secondaires parfois important d'ordre hématologique (risque relatif
d'anémie, de thrombopénie et de leucopénie respectivement égal à
2, 7 et 2), et d'ordre lipidique (risque relatif d'hypertriglycéridémie
égal à 2). Le risque de lymphocèle a été triplé sous rapamycine. Il
n'y a pas eu de modification du taux de cancer post-transplantation
sous rapamycine dans les essais ayant analysé cette variable.
Au total l'utilisation des inhibiteurs de mTOR a montré un effet
intéressant sur la survenue du rejet aigu et la fonction rénale sans
cependant améliorer la survie des greffons et au prix d'effets secondaires parfois majeurs. En plus, les résultats et les effets secondaires à long terme de l'utilisation de la rapamycine sont encore
inconnus et méritent d'être mieux analysés.
La rapamycine remplace les anti-métabolites, l'azathioprine
(AZA) en particulier, en association avec les anticalcineurines
Onze essais cliniques recensant 3966 patients au total ont été
publiés [9]. Le remplacement des antimétabolites par la rapamycine a permis une diminution de l'incidence du rejet aigu sans modification de la survie des greffons, ni de la mortalité des patients
mais avec une dégradation de la fonction rénale et l'apparition d'effets secondaires hématologiques (risque relatif de 2 sous rapamycine) et lipidiques (risque relatif de 2 sous rapamycine). Le risque de
lymphocèle a été triplé chez les patients recevant de la rapamycine.
En revanche les infections à CMV ont été moins fréquentes sous
rapamycine.
DEVELOPPEMENT EN ONCOLOGIE
L'étude pré clinique d'EDINGER a permis de mettre en évidence une
activité anti-tumorale des inhibiteurs du mTOR mais à des degrés
divers : Certaines cellules ont été détruites par de faibles doses, de
l'ordre du nanogramme, tandis que d'autres ont nécessité des doses
beaucoup plus importantes. Un troisième groupe de cellules était
non-répondant [11]. Dans le domaine de l'urologie, l'efficacité des
inhibiteurs du mTOR dans le cancer du rein et de la prostate a fait
l'objet de plusieurs travaux de recherche.
La rapamycine à des doses variables est associée aux anticalcineurines sans anti-métabolites
Huit essais cliniques recensant 3175 patients au total ont été publiés
[9]. Ces études ont comparé de faibles doses à de hautes doses de
rapamycine en association avec un inhibiteur de la calcineurine. La
mortalité des patients et la survie des greffons à deux ans n'étaient
pas différentes. En revanche, les hautes doses de rapamycine ont
diminué l'incidence des rejets aigus et des reprises retardées de la
fonction rénale mais avec une augmentation de fréquence de l'hypercholestérolémie. Il n'y a pas eu de différence quant à la survenue
de cancers post-transplantation.
Cancer du rein
La néo-angiogénèse est un mécanisme important dans le développement du cancer du rein chez l'homme. Elle dépend en partie de l'expression d'un facteur d'hypoxie Hypoxia Inducible Factor (HIF).
Trois arguments vont dans le sens d'un rôle important de mTOR en
tant qu'élément participant à la transduction du signal pro-mitogène :
Les protéines mTOR et PI3K sont indispensables pour l'activité du
Vascular Endothelial Growth Factor (VEGF) sur la prolifération, la
survie et la migration des cellules endothéliales [12]. Le blocage de
cette voie d'activation empêcherait le VEGF d'exercer son action et
empêcherait par conséquent la prolifération cellulaire.
La rapamycine à des doses variables est utilisée avec des anticalcineurines à doses variables
Huit essais cliniques recensant 1178 patients au total ont été publiés
[9]. Les résultats de faibles doses de rapamycine associées à des
anticalcineurines à doses habituelles ont été comparés à ceux de
hautes doses de rapamycine associées à des anticalcineurines à faibles doses. Les différentes associations ont abouti à des résultats
similaires. Une diminution des rejets aigus, sans effet sur la perte
des greffons, a été observée avec une altération de la fonction rénale et l'apparition d'effets secondaires hématologiques et lipidiques
lors de l'utilisation de rapamycine à fortes doses.
La protéine mTOR régule l'activité du HIF [13] dont dépend la néoangiogénèse. Les inhibiteurs de mTOR en diminuant l'expression
du HIF, agissent sur l'angiogénèse tumorale.
Des signes directs d'activation augmentée de la voie
Akt/mTOR/p70S6 ont été mis en évidence dans les cancers du rein
[14].
La rapamycine a été testée sur des tumeurs jugées mTOR dépendantes à cause de la perte du PTEN qui sous-régule l'activité
mTOR/AKT [15]. Les études de phase I ont démontré la supériorité d'une administration intermittente hebdomadaire sur l'administration quotidienne lorsque le temsirolimus était administré par voie
intraveineuse [16].
Parmi les nouveaux inhibiteurs de mTOR, l'everolimus est le seul à
avoir été étudié dans des essais thérapeutiques en transplantation
rénale. Un seul essai de petite taille a comparé le sirolimus à l'everolimus en association avec un anticalcineurine et des corticoïdes.
L'analyse a portée sur 30 patients. Les résultats à 3 mois ont montré une amélioration de la créatininémie et des taux de reprise retardée de la fonction du greffon mais avec une incidence plus élevée
En phase II, ATKINS a montré la bonne tolérance du temsirolimus
chez 111 patients ayant un carcinome à cellules rénales avancé et
930
Y. Neuzillet et coll., Progrès en Urologie (2007), 17, 928-933
tement, a montré que l'association de sirolimus et d'un inhibiteur de
l'EGFR (gefitinib, erlotinib) a permis d'obtenir 19% de réponse partielle et 50% de stabilisation de la maladie [32]. Le sirolimus a également été employé avec efficacité in vitro dans le traitement de
cellules de neuroblastomes. Son association à la vinblastine a donné
un effet anti-angiogénique synergique in vivo [33].
réfractaire à l'immunothérapie et ont rapporté 7% de réponse objectives et 26% de réponses mineures [17]. D'autres essais de phase II
utilisant l'everolimus sont en cours. En phase III, Hudes a rapporté
une augmentation de 3 mois de la survie globale dans le groupe des
patients traités par temsirolimus par rapport au groupe traité par
interféron alpha [18]. Les 626 patients de cette étude avaient un
cancer du rein avec une progression locale et/ou métastatique avec
des critère de “mauvais pronostic” selon la classification de Motzer.
Mélanome
Parallèlement aux résultats modestes de travaux pré-clinique [34],
l'étude de phase II de MARGOLIN comportant 33 patients ayant un
mélanome métastatique n'a pas montré de résultats intéressants
[35]. L'association à un inhibiteur des kinases B-Raf (BAY439006), pourrait permettre une amélioration de ces résultats [36].
Cancer de la prostate
L'acquisition de l'hormono-indépendance par les cellules carcinomateuses prostatiques a été imputée à la mutation ou à la surexpression du gène codant pour le récepteur aux androgènes [19]. L'activation de ce récepteur dépend entre autres de certains facteurs tel
l'IGF-1, epidermal growth factor (EGF) et de la voie
mTOR/PI3K/Akt. Les mécanismes d'action de la voie mTOR sont
encore mal élucidés. L'activation de la voie mTOR par la dihydrotestostérone (DHT) serait dépendante de la synthèse d'ARN messager stimulée par le récepteur aux androgènes [20]. L'activation de la
voie mTOR/S6 kinase jouerait donc un rôle important dans le passage à l'hormono-indépendance [21]. Par conséquent les inhibiteurs
de mTOR sont une voie de recherche intéressante dans le traitement
des tumeurs hormono indépendantes. Les études pré-cliniques ont
montré l'intérêt des inhibiteurs de mTOR pour potentialiser l'effet de
l'irradiation [22] ou de la chimiothérapie [23], notamment dans les
lignées cellulaires présentant une perte de l'activité PTEN.
Leiomyosarcome
Un cas de réponse qualifiée d'impressionnante a été rapporté avec
l'association gemcitabine et rapamycine chez un patient métastatique [37]. Cet unique cas n'a pas été corroborée par d'autre publication.
Mésothéliome pleural
La majorité de ses tumeurs surexprime le récepteur au facteur de
croissance ErbB1 dont le signal est transmis par la voie
mTOR/PI3K/AKT. L'intérêt de l'association de rapamycine et d'un
inhibiteur du récepteur ErbB1 (Lapatinib*) a été démontré in vitro
par MUKOHARA [38].
Cancer de l'ovaire
Autres cancers
Le rôle de la voie mTOR/PI3K/AKT dans la prolifération des cellules de ce cancer a été démontré ainsi que l'intérêt des inhibiteurs
de mTOR in vitro. Des études cliniques sont en cours pour connaître l'intérêt thérapeutique des inhibiteurs de mTOR dans le cancer
de l'ovaire [39].
Cancer du sein
Les inhibiteurs de mTOR ont été employés in vitro sur des lignés
cellulaires de cancer du sein. MONDESIRE a ainsi rapporté un effet
synergique de l'association rapamycine et carboplatine avec le
paclitaxel et un effet additif de l'association rapamycine et gemcitabine et la doxorubicine [24]. ALBERT a montré que les effets cytotoxiques des radiations sur les lignés cellulaires MDA-MB-231 et
MCF-7 de cancer du sein sont majorés in vitro par l'everolimus
[25]. L'association everolimus et letrozole (inhibiteur d'aromatase)
testée in vivo a montré un effet synergique et a prévenu le développement de la résistance aux inhibiteurs d'aromatase [26]. Par
ailleurs, l'effet anti-angiogénique du temsirolimus a été démontré in
vivo [27]. En étude de phase II, 9,2% de réponses objectives ont
été observés avec le temsirolimus utilisé chez 109 patientes ayant
un cancer du sein avancé ou métastatique [28].
Malgré ces résultats encourageants, une résistance à la rapamycine
a été rapportée et ses mécanismes ont été décrits. L'inhibition totale de la voie mTOR/PI3K/AKT a été corrélée à une augmentation
de la résistance cellulaire à l'apoptose. L'étude de McMahon et coll.
a montré que l'inhibition exercée sur la voie mTOR/PI3K/AKT est
plus efficace en étant sélective, par exemple en inhibant la protéine
ribosomale S6 (S6K1) [40]. De nouvelles molécules permettant
cette inhibition sélective sont actuellement en cours de développement.
Par ailleurs l'emploi des inhibiteurs de mTOR en oncologie est limité par le manque de marqueur permettant de prédire l'efficacité du
traitement et de suivre son action. Concernant la prédiction de l'efficacité, l'étude de PTEN semble intéressante car les inhibiteurs de
mTOR sont plus efficaces en cas de perte de PTEN.
Leucémies
Les études in vitro ont montré que la voie mTOR/PI3K/AKT est
impliquée dans survie des cellules de leucémie aigue myéloïde et
que l'everolimus potentialise la cytotoxicité de la chimiothérapie
(Ara-C) sur ces cellules [29]. Dans certains modèles de leucémies
lymphoblastiques aiguës, la rapamycine a inhibé in vitro la croissance des précurseurs lymphocytaires B et a permis, in vivo, un
doublement de la survie dans un modèle murin transgénique [30].
Des études de phase I et II ont été menées chez des patients atteints
de leucémies réfractaires aux traitements usuels par chimiothérapie
et ont montré la bonne tolérance de l'everolimus et des réponses
objectives au traitement [31]. Les études de phase III sont en cours.
Au total, la voie mTOR très convoitée en immunosuppression,
serait aussi intéressante en oncologie. Les études précliniques ont
apporté le rationnel à des études de phase I et II. Les résultats de ces
études ont été encourageants. Cependant les résultats d'étude de
phase III sont attendus pour démontrer l'intérêt de la prescription
d'inhibiteur de mTOR. Parallèlement, la connaissance de plus en
plus approfondie de la voie mTOR permettra sans doute le développement de nouvelles molécules plus efficaces et plus sélectives.
Tumeurs du système nerveux central
CONCLUSION
Les gliomes malins sont caractérisés par une surexpression du
récepteur de l'Epidermal Growth Factor (EGFR) et la perte de
PTEN. L'étude de DOHERTY chez 22 patients en récidive après trai-
Les inhibiteurs de mTOR interrompent le cycle cellulaire en phase
G1 et inhibent ainsi la prolifération cellulaire. Ce mode d'action
931
Y. Neuzillet et coll., Progrès en Urologie (2007), 17, 928-933
leur confère une activité antibiotiques, immunosuppressive et antiproliférative. Si l'effet antibiotique, trop faible, a été négligé, l'effet
immunosuppresseur des inhibiteurs de mTOR a été utilisé en
transplantation rénale et a permis d'obtenir une diminution des
rejets aigus au prix d'effet secondaire hématopoïétique et lipidique.
En oncologie, l'association d'inhibiteur de mTOR à d'autre agent
cytotoxique a augmenté la cytotoxicité et a donné des résultats prometteurs dans le traitement de formes métastatiques de certains
cancers (rein, sein). Cependant, les résultats des études de phase III
sont attendus pour confirmer cette efficacité.
10. KAUFFMAN H.M., CHERIKH W.S., CHENG Y., HANTO D.W., KAHAN
B.D. : Maintenance immunosuppression with target-of-rapamycin inhibitors
is associated with a reduced incidence of de novo malignancies. Transplantation. 2005 ; 80 : 883-889.
11. EDINGER A.L., LINARDIC C.M., CHIANG G.G., THOMPSON C.B.,
ABRAHAM R.T. : Differential effects of rapamycin on mammalian target
of rapamycin signaling functions in mammalian cells. Cancer Res., 2003 ;
63 : 8451-8460.
12. LI W., SUMPIO B.E. : Strain-induced vascular endothelial cell proliferation
requires PI3K-dependent mTOR-4E-BP1 signal pathway. Am. J. Physiol.
Heart Circ. Physiol., 2005 ; 288 : 1591-1597.
13. HUDSON C.C., LIU M., CHIANG G.G., OTTERNESS D.M., LOOMIS
D.C., KAPER F., GIACCIA A.J., ABRAHAM R.T. : Regulation of hypoxiainducible factor 1alpha expression and function by the mammalian target of
rapamycin. Mol. Cell Biol., 2002 ; 22 : 7004-7014.
Ce double effet des inhibiteurs de mTOR pourrait être tout à fait
intéressant dans le domaine des néoplasies post-transplantation.
Étant donné le risque carcinologique chez les transplantés, les propriétés anti-prolifératives des inhibiteurs de mTOR constituent un
argument en faveur de leur intégration au traitement immunosuppresseur d'entretien en particulier chez les patients à risque ou ayant
des antécédents néoplasiques.
14. ROBB V.A., KARBOWNICZEK M., KLEIN-SZANTO A.J., HENSKE
E.P.: Activation of the mTOR signaling pathway in renal clear cell carcinoma. J. Urol., 2007 ; 177 : 346-352.
15. XU G., ZHANG W., BERTRAM P., ZHENG X.F., MCLEOD H. : Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common
human tumors. Int. J. Oncol., 2004 ; 24 : 893-900.
Membres du Comité Transplantation de l'Association Française
d'Urologie :
16. ROWINSKY E.K. : Targeting the molecular target of rapamycin (mTOR).
Curr. Opin. Oncol. 2004 ; 16 : 564-575.
Laetitia ALBANO, Lionel BADET, Benoit BARROU, Pascal BLANCHET, Karim BENSALAH, Emmanuel CHARTIER KASTLER, Véronique DELAPORTE, Fabrice DUGARDIN, Benoît FEUILLU, Marc
GIGANTE, Philipe GRISE, Jacques HUBERT, François IBORRA,
Georges KARAM, François KLEINCLAUSS, Eric LECHEVALLIER,
Marie Christine MOAL, Valérie MOAL, Pierre MONGIAT ARTUS,
Marc MOUZIN, Yann NEUZILLET, Jacques PETIT, Michaël PEYROMAURE, Federico SALLUSTO, Laurent SALOMON, Nicolas
THIOUNN, Christophe VAESSEN, Philippe WOLF.
17. ATKINS M.B., HIDALGO M., STADLER W.M., LOGAN T.F., DUTCHER J.P., HUDES G.R., PARK Y., LIOU S.H., MARSHALL B., BONI
J.P., DUKART G., SHERMAN M.L. : Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase
inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin.
Oncol., 2004 ; 22 : 909-918.
REFERENCES
18. HUDES G., CARDUCCI M., TOMCZAK P., DUTCHER J., FIGLIN R.,
KAPOOR A., STAROSLAWSKA E., O'TOOLE T., PARK Y., MOORE L. :
A phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferon-alpha (IFN) or the combination of TEMSR + IFN in the treatment of
first-line, poor-risk patients with advanced renal cell carcinoma (adv RCC).
J. Clin. Oncol., 2006 ; 24 ; abstract n°LBA4.
2. DILELLA A.G., HAWKINS A., CRAIG R.J., SCHREIBER S.L., GRIFFIN
C.A. : Chromosomal band assignment of the genes encoding human
FKBP12 and FKBP13. Biochem. Biophys. Res. Commun., 1992 ; 189 : 819823.
20. XU Y., CHEN S.Y., ROSS K.N., BALK S.P. : Androgens induce prostate
cancer cell proliferation through mammalian target of rapamycin activation
and post-transcriptional increases in cyclin D proteins. Cancer Res., 2006 ;
66 : 7783-7792.
19. SERONIE-VIVIEN S., RAMBEAUD J.J. : Biologie de la transition des
cancers de la prostate vers l'hormono-résistance : mécanismes et implications thérapeutiques. Prog. Urol., 2006 ; 16 : 675-680.
1. CALNE R.Y., COLLIER D.S., LIM S., POLLARD S.G., SAMAAN A.,
WHITE D.J., THIRU S. : Rapamycin for immunosuppresion in organ allografting. Lancet, 1989 ; 2 : 227.
21. CINAR B., DE BENEDETTI A., FREEMAN M.R. : Post-transcriptional
regulation of the androgen receptor by Mammalian target of rapamycin.
Cancer Res., 2005 ; 65 : 2547-2553.
3. MORICE W.G., BRUNN G.J., WIEDERRECHT G., SIEKIERKA J.J.,
ABRAHAM R.T. : Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S phase growth arrest in T lymphocytes. J. Biol.
Chem., 1993 ; 268 : 3734-3738.
22. CAO C., SUBHAWONG T., ALBERT J.M., KIM K.W., GENG L.,
SEKHAR K.R., GI Y.J., LU B. : Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null
prostate cancer cells. Cancer Res., 2006 ; 66 : 10040-10047.
4. WIEDERRECHT G.J., SABER C.J, BRUNN G.J., MARTIN M.M.,
DUMONT F.J., ABRAHAM R.T. : Mechanism of action of rapamycin: new
insights into the regulation of G1-phase progression in eukaryotic cells.
Prog. Cell Cycle Res., 1995 ; 1 : 53-71.
23. WU L., BIRLE D.C., TANNOCK I.F. : Effects of the mammalian target
of rapamycin inhibitor CCI-779 used alone or with chemotherapy on
human prostate cancer cells and xenografts. Cancer Res., 2005 ; 65 :
2825-2831.
5. COLLIER D.S., CALNE R., THIRU S., LIM S., POLLARD S.G., BARRON P., DA COSTA M., WHITE D.J. : Rapamycin in experimental renal
allografts in dogs and pigs. Transplant. Proc., 1990 ; 22 : 1674-1675.
24. MONDESIRE W.H., JIAN W., ZHANG H., ENSOR J., HUNG M.C.,
MILLS G.B., MERIC-BERNSTAM F. : Targeting mammalian target
of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res., 2004 ; 10 : 70317042.
6. VIKLICKY O., ZOU H., MULLER V., LACHA J., SZABO A., HEEMANN
U. : SDZ-RAD prevents manifestation of chronic rejection in rat renal allografts. Transplantation, 2000 ; 69 : 497-502.
7. SCHUURMAN H.J., COTTENS S., FUCHS S., JOERGENSEN J., MEERLOO T., SEDRANI R., TANNER M., ZENKE G., SCHULER W. : SDZ
RAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation, 1997 ; 64 : 32-35.
25. ALBERT J.M., KIM K.W., CAO C., LU B. : Targeting the Akt/mammalian
target of rapamycin pathway for radiosensitization of breast cancer. Mol.
Cancer Ther., 2006 ; 5 : 1183-1189.
8. STEPKOWSKI S.M., TIAN L., NAPOLI K.L., GHOBRIAL R., WANG
M.E., CHOU T.C., KAHAN B.D. : Synergistic mechanisms by which sirolimus and cyclosporin inhibit rat heart and kidney allograft rejection. Clin.
Exp. Immunol., 1997 ; 108 : 63-68.
26. DEL BUFALO D., CIUFFREDA L., TRISCIUOGLIO D., DESIDERI M.,
COGNETTI F., ZUPI G., MILELLA M. : Antiangiogenic potential of the
Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res., 2006;
66 : 5549-5554.
9. WEBSTER A.C., LEE V.W., CHAPMAN J.R., CRAIG J.C. : Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients : a systematic review and meta-analysis
of randomized trials. Transplantation, 2006 ; 81 : 1234-1248.
27. LANE H.A., LEBWOHL D. : Future directions in the treatment of hormone-sensitive advanced breast cancer : the RAD001 (everolimus)-letrozole
clinical program. Semin Oncol. 2006 ; 33 : 18-25.
932
Y. Neuzillet et coll., Progrès en Urologie (2007), 17, 928-933
28. CHAN S., SCHEULEN M.E., JOHNSTON S., MROSS K., CARDOSO F.,
DITTRICH C., EIERMANN W., HESS D., MORANT R., SEMIGLAZOV
V., BORNER M., SALZBERG M., OSTAPENKO V., ILLIGER H.J., BEHRINGER D., BARDY-BOUXIN N., BONI J., KONG S., CINCOTTA M.,
MOORE L. : Phase II study of temsirolimus (CCI-779), a novel inhibitor of
mTOR, in heavily pretreated patients with locally advanced or metastatic
breast cancer. J. Clin. Oncol., 2005 ; 23 : 5314-5322.
36. MOLHOEK K.R., BRAUTIGAN D.L., SLINGLUFF C.L. JR : Synergistic
inhibition of human melanoma proliferation by combination treatment with
B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J. Transl.
Med., 2005 ; 3 : 39.
37. MERIMSKY O. : Targeting metastatic leiomyosarcoma by rapamycin plus
gemcitabine : an intriguing clinical observation. Int. J. Mol. Med., 2004 ; 14:
931-935.
29. GRANDAGE V.L., GALE R.E., LINCH D.C., KHWAJA A. : PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and
regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53
pathways. Leukemia, 2005 ; 19 : 586-594.
38. MUKOHARA T., CIVIELLO G., JOHNSON B.E., JANNE P.A. : Therapeutic targeting of multiple signaling pathways in malignant pleural mesothelioma. Oncology, 2005 ; 68 : 500-510.
39. MARTIN L., SCHILDER R.J. : Novel non-cytotoxic therapy in ovarian cancer : current status and future prospects. J. Natl. Compr. Canc. Netw., 2006;
4 : 955-966.
30. BROWN V.I., FANG J., ALCORN K., BARR R., KIM J.M., WASSERMAN R., GRUPP S.A. : Rapamycin is active against B-precursor leukemia
in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling.
Proc. Natl. Acad. Sci. USA, 2003 ; 100 : 15113-15118.
40. MCMAHON L.P., YUE W., SANTEN R.J., LAWRENCE J.C. JR : Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol. Endocrinol., 2005 ; 19 : 175-183.
31. YEE K.W., ZENG Z., KONOPLEVA M., VERSTOVSEK S., RAVANDI F.,
FERRAJOLI A., THOMAS D., WIERDA W., APOSTOLIDOU E., ALBITAR M., O'BRIEN S., ANDREEFF M., GILES F.J. : Phase I/II study of the
mammalian target of rapamycin inhibitor everolimus (RAD001) in patients
with relapsed or refractory hematologic malignancies. Clin. Cancer Res.,
2006 ; 12 : 5165-5173.
____________________
mTOR inhibitors : from transplantation to oncology. AFU 2006
Transplantation Committee Review of the literature
32. DOHERTY L., GIGAS D.C., KESARI S., DRAPPATZ J., KIM R., ZIMMERMAN J., OSTROWSKY L., WEN P.Y. : Pilot study of the combination
of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology,
2006 ; 67 : 156-158.
The use of mTOR inhibitors started about 30 years ago following the
discovery of rapamycin, a macrolide derived from a soilborne microorganism Streptomyces hygroscopicus that exerts antibiotic, immunosuppressive and antiproliferative properties. Initially intended to be
used as an antibiotic, a more detailed understanding of the mechanism
of action of this class of drugs has rationalized and validated its use in
the field of transplantation and oncology. Many clinical trials on
mTOR inhibitors have been conducted in these two fields, in which urologists are actively involved. This review summarizes the current knowledge on the mechanism of action and clinical applications of mTOR
inhibitors in renal transplantation and oncology.
33. MARIMPIETRI D., NICO B., VACCA A., MANGIERI D., CATARSI P.,
PONZONI M., RIBATTI D. : Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene, 2005 ;
24: 6785-6795.
34. OHGUCHI K., BANNO Y., NAKAGAWA Y., AKAO Y., NOZAWA Y. :
Negative regulation of melanogenesis by phospholipase D1 through
mTOR/p70 S6 kinase 1 signaling in mouse B16 melanoma cells. J. Cell
Physiol., 2005 ; 205 : 444-451.
35. MARGOLIN K., LONGMATE J., BARATTA T., SYNOLD T., CHRISTENSEN S., WEBER J., GAJEWSKI T., QUIRT I., DOROSHOW J.H. :
CCI-779 in metastatic melanoma : a phase II trial of the California Cancer
Consortium. Cancer, 2005 ; 104 : 1045-8.
Key words : immunology, cancer, transplantation, mTOR inhibitor.
____________________
933
Téléchargement