P∈R[X]RP0R
r∈Rn>2
P∈Rn−1[X]P(k) = rkk∈[[1, n]]
P(n+ 1)
P=X3−X2−1
P
P
P=a0+· · · +anXnan6= 0 k∈[[0, n]] ak=an−k
P n P (X) = XnP(1/X)
1P1 2
−1
P P
P=α
p
Y
k=0
(X2+bkX+ 1)
P0, ..., Pn∈Kn[X] (P0, ..., Pn) (a0, ..., an)∈Kn+1
((Pi(aj))06i,j6n
(a0, ..., an)∈Kn+1 (a0, ..., an)
n∈N∗Φn:P∈Rn[X]7−→ Q−XR Q R P (X2)
An= 1 + X+· · · +Xn
ΦnRn[X]
Φ3R3[X]
n∈N∗∆∈ L(Rn[X]) ∆(P) = P(X+ 1) −P(X)
∆
∀P∈Rn−1[X],
n
X
j=0
(−1)n−jn
jP(X+j)=0.
B=−8−14
3 5
Bn
(un) (vn)un+1 =−16un−28vn
vn+1 = 6un+ 10vn
unvnu0v0