Citations
Saunders Mac Lane (“Categories for the working mathematician”, 2nd ed., notes du
Ch.4) :
. . . Daniel Kan in [1958] was the first to recognize and study adjoint functors.
. . . Bourbaki’s construction problem emphasized representable functors, and asked
“Find F x so that W(x, a)∼
=A(F x, a)”.
This formulation lacks the symmetry of the adjunction problem,
“Find F x so that X(x, Ga)∼
=A(F x, a)”.
and so missed a basic discovery.”
. . . Put differently, good general theory does not search for the maximum generality,
but for the right generality.
Jean-Pierre Marquis (“Categories”, in Stanford Encyclopedia of Philosophy) :
The number of mathematical constructions that can be described as adjoints is simply
stunning. Although the details of each one of these constructions vary considerably, the
fact that they can all be described using the same language illustrates the profound unity
of mathematical concepts and mathematical thinking.
Pr´eservation des (co)limites
Th´eor`eme. Soit une adjonction :
A
F
33B
G
ss
Alors l’adjoint `a gauche Fpr´eserve les colimites
et l’adjoint `a droite Gpr´eserve les limites.
Exemple. Les foncteurs oubli et g´en´erateur :
Ens
F
22Mon
U
rr
forment une adjonction, donc Upr´eserve les limites et Fpr´eserve les colimites,
en particulier :
U(Y
i
Mi) = Y
i
U(Mi)F(X
i
Ai) = X
i
F(Ai)
Upr´eserve l’objet terminal : U({e}) = {∗}
en effet Uest un adjoint `a droite, donc il pr´eserve les limites.
Une pr´eserve pas l’objet initial : U({e}) = {∗} 6=∅
donc Un’est pas un adjoint `a gauche, i.e., Un’a pas d’adjoint `a droite.
Dominique Duval, 11 juillet 2006, Cat´egories pour l’Informatique Chapitre 4, page 3