A=C[X1, ..., Xn]
x= (x1, ..., xn)∈Cnmx={f∈A|f(x1, ..., xn) =
0}A
X1, ..., XnX1, ..., XnA/m2
x
mx/m2
xCX1−x1, ..., Xn−xn
φ:A/m2
x→A/mx⊕mx/m2
x
f7→ f(x),
n
X
i=1
∂f
∂Xi
(x)(Xi−xi)!
C
CnxC
mx/m2
xC(mx/m2
x,C)
VCn
x= (x1, ..., xn)∈VmV,x ={f∈ O(V)|f(x1, ..., xn)=0}
O(V)
V x C
T∗
V,x =mV,x/m2
V,x TV,x =C(mV,x/m2
V,x,C)
I(V)ψ:A→ O(V)
ψ ψ∗:T∗
Cn,x →T∗
V,x
dx:I(V)→T∗
Cn,x
f7→ ∂f
∂Xi
(x)(Xi−xi).
dxX∗
1, ..., dxX∗
nTCn,x X1−
x1, ..., Xn−xnTV,x
TCn,x Pn
i=1 λidxX∗
i
Pn
i=1 λi∂f
∂Xi(x) = 0
(0,0)
x7+xy =y7+y x2=y3
C2
VCn X
C[X]/(X2)C[X]/(X2) = C[]θ
C[]→C
θ∗:C−(O(V),C[]) →C−(O(V),C).