Télécharger, consulter et/ou imprimer le cours au format pdf.

7 – RACINE CARRÉE
A la fin de la séquence 7, je dois maîtriser les compétences suivantes :
7.1 Connaître et savoir utiliser la définition de la racine carrée d'un
nombre positif.
7.2 SC Utiliser la calculatrice pour déterminer la racine carrée d'un nombre
positif.
7.3 Sur des exemples numériques a est un nombre positif, utiliser les
égalités :
a
2=
a
et
a
2=
a
7.4
Sur des exemples numériques a et b sont deux nombres positifs,
utiliser les égalités :
ab
=
a
b
et
a
b
=
a
b
, notamment pour
modifier l’écriture d’un nombre pour l'écrire sous la forme la mieux
adaptée pour résoudre un problème posé.
7.5
Connaître l'existence des différents types de nombres.
1 – RACINE CARRÉE D'UN NOMBRE POSITIF
Définition : a désigne un nombre positif.
La racine carrée de a est le nombre positif dont le carré est a.
La racine carrée de a se note
a
.
Autrement dit : pour tout nombre
a
0
,
a
0
et (
a
)²= a.
Le symbole utilisé
se nomme « radical ».
Exemples :
se lit « racine carrée de 16 » ou « radical de 16 ».
est le nombre positif dont le carré est 16, 4 est positif et
42=16
donc
=4.
5
est le nombre positif dont le carré est 5,
5
n'est pas un nombre décimal, on ne peut
donner qu'une valeur approchée de
5
sous forme décimale
52,2361
(arrondi à
10
4
près). L'écriture de sa valeur exacte nécessite l'utilisation du symbole
et s'écrit
5
.
Autres exemples avec des nombres décimaux :
0,09
=0,3
10,24
=3,2
0,40,6325
Si on cherche la racine carrée des nombres entiers de 0 à 100 (voir l'exemple sur le site
du collège ou utiliser une calculatrice), on observe que certains de ces entiers, comme 0; 1;
4; 9; 16; 25... ont des racines carrées entières. Ces nombres 0; 1; 4; 9; 16; 25... sont des
carrés parfaits (ie : ce sont des carrés de nombres entiers). Pour les autres, on n'a qu'une
valeur approchée sous forme décimale (on peut par exemple arrondir à
10
4
près).
Propriété : a désigne un nombre positif. On a
a
2
=a.
Remarques :
32=3
,
52=5
,
3,82=3,8
,
1
3
2
=1
3
mais attention, ne pas oublier que
- Collège J Prévert 73 410 ALBENS –
cette relation n'est vraie que pour a positif. Par exemple,
32
n'est pas égal à -3 mais à
3. En effet
32=
9=3
2 – RÈGLES DE CALCUL
Deux règles de calcul à retenir :
Racine carrée et produit : la racine carrée d'un produit, de deux nombres positifs, est
égale au produit, de la racine carrée du premier nombre, par la racine carrée du deuxième
nombre.
a et b désignent deux nombres positifs
a
×
b
=
a
×
b
Racine carrée et quotient : la racine carrée du quotient, d'un nombres positifs par un
nombre strictement positif, est égale au quotient, de la racine carrée du premier nombre,
par la racine carrée du deuxième nombre.
a et b désignent deux nombres positifs,
b
0
a
b
=
a
b
Exemples de transformation d'écriture de la forme
a
×
b
=
a
×
b
et
a
b
=
a
b
:
A=
20=
4×5=
4×
5=2
5
B=
5
49=
5
49=
5
7
Exemples de transformation d'écriture de la forme
a
×
b
=
a
×
b
et
a
b
=
a
b
:
C=
2×
32=
2×32=
64=8
D=
30
10 =
30
10 =
3
Autre exemple d'utilisation, « écrire sous la forme
a
b
avec a et b entiers, b étant le
plus petit possible » :
E=
50
E=
25×2
E=
25×
2
E=
5
2
F=
5
3
2
48
F=
5
3
2
16×3
F=
5
3
2×
16×
3
F=
5
3
2×4×
3
F=
5
3
8
3
F=
3
3
Remarques : attention, avec les racines carrées, il n'existe pas de formule simple pour
les sommes et les différences. Par exemple :
916=
25=5
et
9
16=34=7
donc
916
9
16
100
36=
64=8
et
100
36=106=4
donc
100
36
100
36
- Collège J Prévert 73 410 ALBENS –
3 – LES DIFFÉRENTS TYPES DE NOMBRES
Les différents types de nombres rencontrés depuis que vous avez appris à compter
jusqu'en troisième sont :
Au début...les entiers naturels : 0 ; 1 ; 2 ; 3 ; 4 ; 5...
Puis, les nombres décimaux positifs : 1,3 ; 12,5 ; 7,58...
première remarque : les entiers naturels sont des nombres décimaux positifs particuliers,
ce sont des décimaux positifs dont la partie décimale est nulle.
Ensuite, les nombres rationnels comme quotient d'un nombre positif par un nombre
strictement positif :
1
2
;
3
4
;
5
3
...
Ensuite les nombres relatifs : on travaille alors avec des nombres positifs ou négatifs et on
distingue,
Les entiers relatifs : -27 ; -5 ; -1 ; O ; 1 ; 250...
Les nombre décimaux : un nombre décimal est un nombre qui peut s'écrire sous la forme
d'un quotient d'un entier relatif par un puissance de dix, comme : -27 ; -5 ; -1 ; O ; 1 ; 250 ;
-4,5 ; 0,35 ; 9,43 ; -7,5...
Les nombres rationnels : un nombre rationnel est un nombre qui peut s'écrire sous la
forme d'un quotient de deux nombres entiers relatifs, comme
5
7
;
8
3
...
Deuxième remarque : Les entier relatifs et les nombres décimaux sont des nombres
rationnels particuliers.
Le nombre -3 est un entier relatif, mais on on peut aussi l'écrire par exemple
6
2
donc -3
est aussi un nombre rationnel.
Le nombre 5,73. est un nombre décimal, mais on peut aussi l'écrire
573
100
donc 5,73 est
aussi un nombre rationnel.
Certains nombres rationnels ne sont pas des nombres décimaux, comme
1
3
;
4
7
...dans ce
cas on ne peut donner qu'une valeur approchée sous forme décimale.
Et enfin nous avons rencontré des nombres qui ne sont pas des rationnels, comme
2
;
5
mais aussi le nombre
. Ce sont des nombres irrationnels.
9
est un entier relatif, c'est 3, ou encore
30
10
donc c'est aussi un nombre décimal et un
nombre rationnel.
9
25
est un nombre décimal et un nombre rationnel, c'est
3
5=0,6
, ce n'est pas un entier
relatif.
16
9
Est un nombre rationnel, c'est
4
3
, mais ce n'est pas un nombre décimal, donc pas un
entier non plus. (voir aussi la séquence « Arithmétique » dans votre classeur).
Il faut savoir changer l'écriture d'un nombre quand cela est nécessaire.
- Collège J Prévert 73 410 ALBENS –
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !