k p(ω1,...,ωk−1)
k(ω1, . . . , ωk−1)k
PΩ1× · · · × Ωk−1× {ωk} × Ωk+1 · · · × Ωn
Ω1× · · · × Ωj−1× {ωj} × Ωj+1 · · · × Ωnk6=j
PΩ
P(Ω) P(E) = P
ω∈E
P({ω})P
ω∈Ω
P({ω})=1
k p(ω1,...,ωk−1)
k
P
ω∈Ω
P({ω}) = P
ω1∈Ω1
p1({ω1}) P
ω2∈Ω2
p(ω1)
2({ω2}). . . P
ωn∈Ωn
p(ω1,...,ωn−1)
n({ωn})!. . .!= 1
(1)
Ω1={1,2}p1({1}) = p1({2}) = 1/2
Ω2={n, b}p(1)
2({n}) = 7
10 p(2)
2({n}) = 9
20 Ω = {(1, n),(2, n),(1, b),(2, b)}P({(1, n)}) =
1
2
7
10 Ui={(i, n),(i, b)}i= 1 2 N={(1, n),(2, n)}P(Ui) = 1/2
PU1(N) = 7
10
a k
p2a
P(n) 2a n
n
n+k
P(n) = pP (n+k) + (1 −p)P(n−k).
a k ul=P(lk)
ul+2 −1
pul+1 +1−p
pul= 0
u0=P(0) = 0 u2a
k=P(2a) = 1
x2−1
px+1−p
p= 0
1−p
p
p6= 1/2p1/2ul=
α+β1−p
plα β u0= 0 u2a
k= 1
P(a) = ua/k =1−(1−p
p)a/k
1−(1−p
p)2a/k =1
1+(1−p
p)a/k ,
k=a p
p= 1/2x2−1
px+1−p
p= 0
ul=α+lβ ul=lk
2a
P(a) = ua/k = 1/2k