f:O → FC1df (x)=0
x∈ O.
f:E→FC1E
df (x) = f x ∈E. x, h E,
f(x+h) = f(x) + f(h) = f(x) + f(h) + ∥h∥ε(h)
ε= 0 f df (x) = f.
E, F
C1E.
n≥2, E1,··· , EnE=
n
k=1
Ek
∀x= (x1,··· , xn)∈E, ∥x∥= max
1≤k≤n∥xk∥
n f E F C1E
x, h E
df (x) (h) =
n
k=1
f(x1,··· , xk−1, hk, xk+1,···, xn)
x, h E, n f,
f(x+h) = f(x1+h1,··· , xn+hn)
=f(x1,··· , xn) +
n
k=1
f(x1,···, xk−1, hk, xk+1,··· , xn) + R(x, h)
R(x, h)f(y1,··· , yn)
j̸=k(yj, yk) = (hj, hk).
f n M ≥0
∀y∈E, ∥f(y)∥ ≤ M
n
k=1 ∥yk∥
j̸=k(yj, yk) = (hj, hk),
∥f(y)∥ ≤ M∥hk∥∥hk∥
n
i=1
i/∈{j,k}
∥yk∥ ≤ M∥h∥2
n
i=1
i/∈{j,k}
∥yk∥
αx∥h∥ ≤ 1,
∥R(x, h)∥ ≤ αx∥h∥2
f(x+h) = f(x1,··· , xn) +
n
k=1
f(x1,··· , xk−1, hk, xk+1,··· , xn) + ∥h∥o(h)
f x
n f h 7→
f(x1,··· , xk−1, hk, xk+1,··· , xn), df (x)