45 Fonctions de plusieurs variables : dérivés partielles, di érentielle

C1.
E F Lc(E, F )
E F,
u∈ Lc(E, F ),u= sup
xE\{0}
u(x)
x= sup
x=1 u(x)
∥·∥EE∥·∥F
F. ∥·∥
E F.
Lc(E, F )E F
E F E F
Lc(E, F ) = L(E, F ).
fOE
F a ∈ O u∈ Lc(E, F )
V0E
h∈ V, f (a+h) = f(a) + u(h) + o(h)
f a,
u∈ Lc(E, F )ε B (0, η) 0
η > 0
lim
h0ε(h) = 0
hB(0, η), f (a+h) = f(a) + u(h) + hε(h)
lim
h0f(a+h)f(a)u(h)
h= 0
η > 0B(a, η)⊂ O.
E F
f a
γf(a+h)f(a)u(h)
δhf(a+h)f(a)u(h)
hβf(a+h)f(a)u(h)
αh
α, β, γ, δ
OE f :O F. f
a∈ O,
f(x)f(a) = u(xa) + xaε(xa)
xa0
u
OE f :O F. f
a∈ O,(45.1)
u, v Lc(E, F ).
lim
h0(vu) (h)
h= 0
xE\ {0},
0 = lim
t0(vu) (tx)
tx=(vu) (x)
x
(vu) (x) = 0, u (x) = v(x).
x= 0, u =v.
df (a)
E F (45.1) f a.
E n 1
F=R, f :O Ra∈ O, df (a)
E gf(a)E df (a) (x) =
gf(a)|xxE. gf(a)f a.
E=R,
ORf:O F. f
a∈ O τa:x7→ 1
xa(f(x)f(a)) O \ {a}
a. f(a)
ORf:O F. f
a∈ O df (a) (h) = f(a)h
hRf(a) = df (a) (1)
f a, x O \ {a}
f(x) = f(a) + (xa)τa(x)
=f(a) + (xa)f(a)+(xa) (τa(x)f(a))
x=a τa(a) = f(a).lim
xaτa(x) = f(a),
f(x) = f(a) + (xa)f(a) + o(xa)
f a
df (a) : hR7→ f(a)h
f a, x V \ {a},V
aOf(x) = f(a) + df (a) (xa) + o(xa)
1
xa(f(x)f(a)) = 1
xadf (a) (xa) + o(1)
=df (a) (1) + o(1)
xadf (a) (1)
f a df (a) (1) .
OE f :O F. f
a∈ O f a u ∈ L(E, F )
f(a+h) = f(a) + u(h) + o(h).
E, F
u(h) = f(a+h)f(a) + o(h)f a,
lim
h0u(h) = 0, u 0, E.
f a df (a) = u.
OE f :O F. f
O,O.
f:O FO,
df :O → Lc(E, F )
x7→ df (x)
f.
df Lc(E, F )
fC1O.
f:O FC1df (x)=0
x∈ O.
f:EFC1E
df (x) = f x E. x, h E,
f(x+h) = f(x) + f(h) = f(x) + f(h) + hε(h)
ε= 0 f df (x) = f.
E, F
C1E.
n2, E1,··· , EnE=
n
k=1
Ek
x= (x1,··· , xn)E, x= max
1knxk
n f E F C1E
x, h E
df (x) (h) =
n
k=1
f(x1,··· , xk1, hk, xk+1,···, xn)
x, h E, n f,
f(x+h) = f(x1+h1,··· , xn+hn)
=f(x1,··· , xn) +
n
k=1
f(x1,···, xk1, hk, xk+1,··· , xn) + R(x, h)
R(x, h)f(y1,··· , yn)
j̸=k(yj, yk) = (hj, hk).
f n M 0
yE, f(y)∥ ≤ M
n
k=1 yk
j̸=k(yj, yk) = (hj, hk),
f(y)∥ ≤ Mhkhk
n
i=1
i/∈{j,k}
yk∥ ≤ Mh2
n
i=1
i/∈{j,k}
yk
αxh∥ ≤ 1,
R(x, h)∥ ≤ αxh2
f(x+h) = f(x1,··· , xn) +
n
k=1
f(x1,··· , xk1, hk, xk+1,··· , xn) + ho(h)
f x
n f h 7→
f(x1,··· , xk1, hk, xk+1,··· , xn), df (x)
det : Mn(R)R
nC1Mn(R)
d(det) (X) (H) =
n
k=1
det (X1,··· , Xk1, Hk, Xk+1,··· , Xn)
X∈ Mn(R)Xkk
(E, ⟨· | ·⟩)f:x7→ ∥x=
x|xE\ {0}xE\ {0}hE
df (x) (h) = x|h
x
x, h E,
x+h2=x2+ 2 x|h+h2
x+h2− ∥x2= (x+h∥−∥x) (x+h+x)
= 2 x|h+h2
x̸= 0,h<xx+h̸= 0
x+h∥−∥x=2x|h
x+h+x+h2
x+h+x
=x|h
x
2x
x+h+x+h2
x+h+x
x+h∥ − ∥x∥ − x|h
x=x|h
x2x
x+h+x1+h2
x+h+x
=x|h
xx∥−∥x+h
x+h+x+h2
x+h+x
x+h∥−∥x∥ − x|h
x|⟨x|h⟩|
x|∥x∥−∥x+h∥|
x+h+x+h2
x+h+x
≤ ∥h|∥x∥−∥x+h∥|
x+h+x+h2
x+h+x
≤ ∥h|∥x∥−∥x+h∥| +h
x+h+x
1 / 28 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !