Rγf.ds f γ
f= (x, y)γ
x≥0, y ≥0
f= (xy, y2)γ(1,1),(1,2),(2,2),(2,1)
f= (x, y)γ y =x3+x2+x+ 1 0 ≤x≤1
f= (x2−2xy, 2xy +y2)γ y =x2
(1,1) (2,4)
f= (2a−y, x)γ
x=a(t−sin t)
y=a(1 −cos t)t∈[0,2π]
f= (2xy, x2)O= (0,0)
A= (2,1)
y=x
2
y=x2
4
y2=x/2
OBA B = (2,0)
f= (x2+y, 2x+y2)γ(1,1),(1,2),(2,2),(2,1)
f=1
x2+y2(x, −y)γ
f=1
x2+y2(x, y)γ
f= (xy, x2)γ
(x=R+Rcos θ
y=R+Rsin θ
FΓ1(0,0)
y
F= (x+y, x −y)
F= (xy, x +y)
F=MG
√x2+y23(x, y)M G
Rγy dx +x dy −z2dz γ
x2+y2= 1
Rγz dx +x dy +y dz γ ≡x−1 = y=z−2x∈[1,2]
Rγx dx −y dy +z dz γ ≡x2+y2+z2= 25, z = 4
F= (3xy, −5z, 10x)x=t+ 1, y = 2t2, z =t3
t∈[1,2]
(ρ, θ)xdy −ydx =ρ2dθ
1
2Rγxdy −ydx γ