⋆Im fk+1 ⊂Im fk
y∈Im fk+1 x∈E y =fk+1(x)
y=fkf(x)=fk(z)z=f(x)
y∈Im fk
∀k∈NKer fk⊂Ker fk+1 Im fk+1 ⊂Im fk
∀k∈Nak= dim Ker fk
∀k∈NKer fk⊂Ker fk+1 dim Ker fk6dim Ker fk+1
∀k∈Nak6ak+1
(ak)k∈NN
(ak)n= dim E E
E
k ak+1 > akak
ak+1 >ak+ 1
k ak>k+a0
an+1 >n+ 1 + a0>n+ 1
FNak=ak+1
F
N
F
p∈[[1, n]] F F ap=ap+1
k < p ak̸=ak+1 p∈[[1, n]]
• ∀k∈[[0, p −1]] dim Ker fk̸= dim Ker fk+1
•dim Ker fp= dim Ker fp+1
p∈[[1, n]]
• ∀k∈[[0, p −1]] Ker fk̸= Ker fk+1
•Ker fp= Ker fp+1
k>p∀k∈[|p, +∞[|Ker fk= Ker fp
⋆ k =p
⋆ k p Ker fk= Ker fp
Ker fk⊂Ker fk+1 Ker fp⊂Ker fk+1
x∈Ker fk+1 f(x)∈Ker fkf(x)∈Ker fp
fpf(x)= 0 = fp+1(x)x∈Ker fp+1
Ker fp= Ker fp+1 x∈Ker fp
Ker fk+1 ⊂Ker fp