1
27- Les probabilités
I. Vocabulaire
Quand on lance une pièce de monnaie pour jouer à pile ou
face, on réalise une expérience aléatoire.
Cette expérience admet 2 issues : pile ou face.
Ces issues ne dépendent pas des issues des expériences
précédentes.
Un événement peut être constitué d’une ou plusieurs issues.
Un événement réalisé par une seule issue est un événement
élémentaire.
Autre exemple
On lance un dé à 6 faces, marquées de 1 à 6.
Cette expérience aléatoire admet 6 issues.
L’événement « Obtenir un nombre pair » est réalisé par les 3
issues élémentaires tirage d’un 2, d’un 4 ou d’un 6.
2
II. Equiprobabilité
Lorsque tous les événements élémentaires ont la même
probabilité, on dit qu’il s’agit d’une situation d’équiprobabilité.
Exemple 1
Avec la pièce de monnaie, on a autant de chance d’obtenir pile ou
face, si la pièce est équilibrée.
P(pile) = P(face) =
1
2
Remarque
Lorsqu’on lance un très grand nombre de fois une pièce de
monnaie équilibrée, la fréquence de pile et de face se rapproche
de 0,5…
Exemple 2
Avec le dé à 6 faces, on a autant de chance d’obtenir une face.
1
6
P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =
3
Si n est le nombre d’issues d’une expérience aléatoire, la
probabilité d’un événement élémentaire est :
1
n
III. Probabilité d’un événement quelconque
Dans une situation d’équiprobabilité, si A est un événement
quelconque, on a :
 
Nombre de cas favorables à A
PA Nombre de cas possibles
Exemple
Expérience : lancer du dé à 6 faces
Événement A : « Obtenir un nombre pair »
Cas favorables :
Cas possibles :
 
PA
2 4 6
1 2 3 4 5 6
3
6
1
2
4
IV. Propriétés
Soit A un événement.
P(A) : probabilité que A se réalise
0 P(A) 1
Si P(A) = 0,
Si P(A) = 1,
La somme des probabilités de tous les événements élémentaires
est égale à
V. Événements incompatibles
Deux événements sont incompatibles s’ils ne peuvent pas se
produire en même temps.
Si A et B sont incompatibles, P(A ou B) = P(A) + P(B)
l’événement A est impossible.
l’événement A est certain.
1.
5
Exemple
Expérience : lancer du dé à 6 faces
Événement A : « Obtenir un multiple de 3 »
Événement B : « Obtenir un nombre inférieur à 3 »
Cas possibles :
Issues de A :
Issues de B :
 
PA
 
 
P A ou B P A P B
 
P A ou B
1 2 3 4 5 6
3 et 6
1 et 2
2
6
1
3
2
6
1
3

11
33
2
3
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !