T.D. DE STATISTIQUES : FLUCTUATION D’ECHANTILLONNAGE
LANCERS DE PIECES DE MONNAIE
Expérience aléatoire : Lancer 4 pièces de monnaie et noter le nombre de pièces tombées côté PILE.
On veut simuler l’expérience du lancer de 4 pièces à l’aide de la fonction random de la calculatrice.
1- Décrire une méthode de simulation.
2- Réaliser cette expérience de simulation 10 fois.
3- Regrouper les expériences réalisées par l’ensemble de la classe. Compléter le tableau suivant :
Nombre de pièces côté PILE 0 1 2 3 4
Effectif
Fréquence
4- Dresser le diagramme des fréquences.
On s’intéresse particulièrement à la fréquence
fn
de l’événement E « Deux pièces sur les quatre sont
tombées côté PILE » lorsque l’on réalise l’expérience n fois.
1- On simule 100 fois l’expérience du lancer de 4 pièces et on calcule la fréquence
f100
.
2- A l’aide d’un tableur on réalise cette simulation
de 100 à 15 000 fois.
On trace la représentation graphique
de la suite des fréquences
fn
ainsi obtenues.
a) En observant cette représentation graphique
expliquer pourquoi on peut parler de relative
stabilisation de la fréquence
fn
pour de grandes valeurs de n.
b) En construisant un arbre pour dénombrer
les issues possibles montrer que la probabilité
d’obtenir deux "Pile" lorsque l’on lance quatre pièces biens équilibrées est égale à
3
8
.
Partie 1
Partie 2
0,350
0,450
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
Chapitre 3 Probabilités
me
Pce
me
Pce
résultat
me
Pce
PP
F
(P, P, P, P)
(P, P, P, F)
(P, P, F, P)
(P, P, F, F)
(P, F, F, P)
(P, F, F, F)
(P, F, P, P)
(P, F, P, F)
(F, P, P, P)
(F, P, P, F)
(F, P, F, P)
(F, P, F, F)
(F, F, F, P)
(F, F, F, F)
(F, F, P, P)
(F, F, P, F)
re
Pce
FP
F
PP
F
FP
F
PP
F
FP
F
PP
F
FP
F
P
F
P
F
P
F
La probabilité d'obtenir deux "Pile" lorsqu'on lance quatre pièces bien équilibrées
est définie comme la proportion de l'événement "obtenir deux "Pile" dans
l'ensemble des issues possibles.
L'arbre permet de "voir" qu'il y a 16 issues possibles dont 6 contenant,
(et ne contenant que), deux "Pile".
p=6
16=6
8
.
On appelle expérience aléa toire une expérience dont les issues possibles,
(les résultats possibles), sont connues, mais dont le résultat obtenu ne l'est pas.
Ce résultat obtenu est une des issues possibles.
Comment distinguer deux issues possibles quand on a un choix à faire ?
Comment généraliser les résultats d'une étude statistique tout en contrôlant le résultat. C'est à dire comment être
"sûr" qu'un sondage reflète bien ce que "pense" une population bien plus importante.
À la fréquence d'un événement mesurée sur un échantillon on associe sa probabilité lors d'une expérience
aléatoire.
(i) L'ensemble de toutes les issues possibles d'une expérience aléatoire est appelé "univers" et est noté
.
Dans le problème, quel est
=
(ii) Un événement est une partie de l'univers. C'est un ensemble correspondant à un critère donné.
Remarque : si A est un événement de
, on aurait dit dans le chapitre 1 que A était une sous-population de
.
(iii) Un événement élémentaire est un événement qui ne possède qu'une seule issue possible.
Donner un événement élémentaire du problème. A =
(iv) Un événement certain est un événement qui contient toutes les issues possibles.
Donner un événement certain du problème. B =
(v) Un événement impossible est un événement qui ne peut pas se réaliser.
Remarque : l'ensemble vide
est un événement impossible.
Donner un événement impossible du problème. C =
(vi) Soit A et B deux événements. L'intersection des événements A et B est l'événement qui est réalisé à la
fois par A et par B, (simultanément). Il est noté
AB
. On dit : " A inter B ".
Donner deux événements D et E et leur intersection.
(vii) Lors d'une expérience aléatoire deux événements A et B sont dits disjoints ou incompatibles lorsqu'ils ne
peuvent pas se produire en même temps.
Remarque : dans ce cas l'événement
AB
est donc impossible, se qu'on note
AB=∅
.
Donner deux événements F et G disjoints.
(viii) Soit A et B deux événements. L'union des événements A et B est l'événement qui est réalisé soit par A,
soit par B, soit par A et B. Il est noté
AB
. On dit : " A union B ".
Donner l'union des événements D et E.
(ix) L'événement contraire de l'événement A de l'univers
est constitué des éléments de
n'appartenant
pas à A. Il est noté
A
.
Quel est l'événement contraire de l'événement A choisi au (iii) ?
:
AA=
et
AA=
.
I- Fréquences statistiques et probabili.
II- Vocabulaire
Proprtés
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !