ÉPREUVE DE BERNOULLI ET LOI BINOMIALE..............................................................................................................................2
I.
RAPPEL SUR LA NOTION D’ÉVÉNEMENTS INDÉPENDANTS..........................................................................................2
II.
ÉPREUVE DE BERNOULLI .........................................................................................................................................................2
III.
SCHÉMA DE BERNOULLI...........................................................................................................................................................2
IV.
VARIABLE ALÉATOIRE..............................................................................................................................................................3
V.
ARBRE D’UN SCHÉMA DE BERNOULLI.................................................................................................................................3
1)
U
N SEUL LANCÉ D
UNE PIÈCE DE MONNAIE
:...................................................................................................................................3
2)
D
EUX LANCÉS DE SUITE D
UNE PIÈCE DE MONNAIE
.........................................................................................................................3
3)
A
RBRE PONDÉRÉ
.............................................................................................................................................................................4
4)
É
TUDE D
UN CAS COMPLET
.............................................................................................................................................................4
VI.
LA LOI BINOMIALE.....................................................................................................................................................................5
Cas particuliers importants..................................................................................................................................................................5
1)
D
IAGRAMME D
UNE LOI BINOMIALE
................................................................................................................................................5
Lancé de pièces de monnaie.................................................................................................................................................................5
Bon de réduction..................................................................................................................................................................................5
2)
E
SPÉRANCE MATHÉMATIQUE
..........................................................................................................................................................6
Définition :...........................................................................................................................................................................................6
Exemple de calcul d’espérance :..........................................................................................................................................................6
Espérance d’une loi binomiale.............................................................................................................................................................6
Épreuve de Bernoulli et loi binomiale
I. Rappel sur la notion d’événements indépendants
Deux événements sont dits indépendants si le la réalisation de l’un n’a aucune influence sur la probabilité de réalisation de l’autre.
Exemples :
On jette successivement deux dés et on appelle P = 1
6 la probabilité de sortir un six avec un dé. Quelque soit le résultat du
premier dé, la probabilité pour que le deuxième dé sort un six reste égale à P.
Un exemple frappant d’une erreur de raisonnement sur la dépendance d’événements concerne le loto :
Certains joueurs sont persuadés que si un numéro n’est pas sorti pendant plusieurs tirages de suite sa probabilité d’apparition
aux prochains tirages est plus élevée :
Voici par exemple un tableau du nombre de sortie de quelques numéros sur 50 tirages.
Sur 50 tirages du Loto, le nombre 48 n’est jamais sorti. Il est tentant de croire que ce numéro a
plus de chance de sortir que les autres donc je vais jouer de préférence le 48. Raté, je n’ai
absolument pas augmenté mes chances, les tirages successifs étant indépendants, la probabilité
de sortie du numéro 48 n’a pas augmentée.
Le hasard n’a pas de mémoire ce qui veut dire que les résultats des 50 tirages n’influencent
pas les tirages suivants.
La Française des jeux n’hésite malheureusement pas à jouer sur ce préjugé.
Voici ce que l’on peut lire sur son site :
« Ces statistiques vous permettront de voir les numéros sortant le plus fréquemment ou au
contraire ceux qui sortent peu souvent et sont donc plus susceptibles de faire partie de la
prochaine grille gagnante du Loto. »
http://www.lesbonsnumeros.com/loto/statistiques/numeros/nombre-sorties.htm
Contres exemples
Une urne contient 5 boules blanches et 5 boules rouges. On tire successivement deux boules de l’urne sans les remettre dans l’urne et
soit p la probabilité de tirer une boule rouge.
Pour le premier tirage on a bien sûr p = 1
2, mais tout se complique lorsqu’on tire la deuxièmes boule :
Il reste maintenant 9 boules dans l’urne
Si la première boule tirée est blanche alors il y a toujours 5 boules rouges et on a p = 5
9
Et si la première boule tirés est rouge, alors il reste 4 boules rouges et on a p = 4
9
Le résultat du deuxième tirage dépend du résultat du premier tirage : les deux événements sont dépendants
II. Épreuve de Bernoulli
Une épreuve de Bernoulli est une expérience aléatoire avec seulement deux issues possibles : un résultat attendu qu’on appelle
« réussite » de probabilité p et son contraire qu’on appellera bien sûr « échec » de probabilité souvent notée q =1 - p
Exemples :
Lancer une pièce de monnaie en espérant qu’elle va tomber sur « pile ». La probabilité de la réussite est égale à celle de l’échec,
soit 1
2
Lancer un dé en espérant qu’il va tomber sur le « six ». La probabilité de la réussite est p = 1
6 et celle de l’échec q = 5
6
III. Schéma de Bernoulli
Si on répète plusieurs fois de suite une épreuve de Bernoulli on obtient un schéma de Bernoulli. Mais attention toutes les épreuves
doivent être indépendantes :
Lancer plusieurs fois de suite une pièce de monnaie est un schéma de Bernoulli.
Tirer, sans la remettre, plusieurs fois de suite une boule d’une urne contenant des boules de deux couleurs différentes
n’est pas un schéma de Bernoulli. Les tirages successifs ne sont pas indépendants.
Un schéma de Bernoulli est donc défini par deux paramètres : la probabilité p de réussite d’une épreuve et le nombre n
d’épreuves successives
numéros
nombre de
sorties
39 5
40 7
41 8
42 4
43 3
44 7
45 5
46 2
47 3
48 0
49 5
IV. Variable aléatoire
Prenons l’exemple du lancé de pièce de monnaie.
On lance une pièce de monnaie en espérant qu’elle tombe sur pile.
Au lieu d’écrire : probabilité pour que la pièce tombe sur pile, on écrira p(x = 1)
Et la probabilité de perdre s’écrira p(x = 0)
Le nombre x est appelé variable aléatoire
Si maintenant on lance plusieurs fois de suite une pièce de monnaie
Dans un schéma de Bernoulli on s’intéresse au nombre de réussites, sans tenir compte de l’ordre.
p(x = 1) veut dire qu’une seule des pièces est tombée sur pile. Que ce soit la première, la dernière ou n’importe quel autre rang n’a
aucune importance
p(x = 2) veut dire que seulement deux pièces sont tombées sur pile.
p(x 2) veut dire au moins deux pièces sont tombées sur pile
V. Arbre d’un schéma de Bernoulli
1) Un seul lancé d’une pièce de monnaie :
Il n’y a que deux possibilités : pile on gagne, face on perd
La variable aléatoire ne prend que deux valeurs 0 ou 1
La pièce tombe sur « pile » p(x = 1) = 1
2
La pièce tombe sur « face » p(x = 0) = 1
2
2) Deux lancés de suite d’une pièce de monnaie
La probabilité de réussite d’un lancé est toujours 1
2, et on lance la pièce deux fois de suite
On est bien dans le cas d’expériences indépendantes, c’est donc un schéma de Bernoulli de paramètre p = 1
2 et n = 2
Il y a maintenant quatre possibilités : la pièce retombe sur pile de 0 à 2 fois
La variable aléatoire peut prendre trois valeurs : 0, 1, 2
Toutes les branches sont équiprobables, il y a donc 4 cas
possibles équiprobables (il y a 4 branches finales)
Calculons la probabilité de chacun de ces 4 cas
Aucune pièce ne tombe sur « pile » ce qui correspond à l’unique cas
favorable {face ; face}
p(x = 0) = 1
4
1 seule pièce tombe sur « pile » ce qui correspond aux deux cas favorables
{face ; pile} ou {pile ; face}
p(x = 1) = 2
4 = 1
2
les deux pièces tombent sur « pile » ce qui correspond à l’unique cas
favorable {pile ; pile}
p(x = 2) = 1
4
On vérifie que p(x = 0) + p(x =1) + p(x = 2) = 1
4 + 1
2 + 1
4 = 1
Mais on peut raisonner autrement. Ce n’est pas très utiles dans ce cas car obtenir « pile » ou « face » avec une pièce sont
des événements équiprobables, mais dans le cas général ou les probabilités de réussite et d’échec ne sont plus les mêmes
on ne pourra pas faire autrement.
On utilisera un arbre pondé
3) Arbre pondéré
Sur chaque branche de l’arbre on indique la probabilité de
l’événement correspondant.
On appelle chemin un déplacement sur l’arbre de l’origine O à
une extrémité de l’arbre.
Sur un chemin on multiplie les probabilités de chaque branche
Si plusieurs chemins sont favorables on fait la somme des
probabilités de chaque chemin
Étudions le cas ou on veut calculer p(x = 1)
Deux cas favorables {pile ; face} ou {face ; pile}
chacun des ces cas correspond à un chemin sur l’arbre
Chemin {pile ; face}
probabilité 1
2 × 1
2 = 1
4
Chemin {face ; pile}
probabilité 1
2 × 1
2 = 1
4
On a bien p(x = 1) = 1
4 + 1
4 = 1
2
4) Étude d’un cas complet
Pour faire sa publicité un magasin a disposé une urne contient trois boules noires et une boule blanche. Au moment de payer chaque
client tire une boule puis la remet dans l’urne. Un client obtient un bon de réduction uniquement s’il tire une boule blanche.
Trois clients se présentent, calculer la probabilité pour qu’aucun, un deux ou les trois clients obtiennent un bon de réduction.
Le tirage se faisant avec remise, chaque client a toujours une boule à choisir parmi quatre. Les trois tirages sont indépendants on est
bien dans le cas d’un schéma de Bernoulli.
Pour chaque client la probabilité d’obtenir un bon de réduction est p = 1
4 et trois clients se présentent on a donc n = 3
C’est un schéma de Bernoulli de paramètres p = 1
4 , n = 3 et q = 1 –p = 3
4
Pour faire l’arbre on appellera B l’événement, un joueur tire une boule blanche et
N le joueur tire une boule noire.
P(B) = 1
4 P(N) = 3
4
On n’est plus dans un cas d’équiprobabilité ( il y a 8 branches finales mais elles
ont des probabilités différentes)
La variable aléatoire X qui défini le nombre de joueurs obtenant un bon de
réduction peut prendre les valeurs 0, 1, 2 ou 3
Sur l’arbre tous les chemins possibles ont été numérotés de 1 à 8
Tous les clients tirent une boule noire. Il n’y a qu’un seul chemin, le 8
P(x = 0) = 3
4×3
4×3
4 = 27
64
Un seul client tire une boule blanche. Il y a trois chemins favorables, 4, 6 et 7
P(x = 1) = 1
4×3
4× 3
4 + 3
4×1
4×3
4 + 3
4×3
4×1
4 = 27
64
Deux clients tirent une boule blanche. Il y a trois chemins favorables 2, 3 et 5
p(x = 2) = 1
4 × 1
4 ×3
4 + 1
4×3
4×1
4 + 3
4×1
4 × 1
4 = 9
64
Enfin les trois clients tirent une boule blanche. Chemin 8
p(x = 3) = 1
4 × 1
4 × 1
4 = 1
64
On peut représenter ces résultats sous forme de tableau ou un diagramme en bâton
Si on veut par exemple, calculer la probabilité pour qu’au moins deux clients gagnent un bon de
réduction :
p(x 2) =
9
64 + 1
64 = 10
64 = 0,15625 (environ 15 chances sur 100)
nbre de clients obtenant un bon
0 1 2 3
probabilité 27
64 27
64 9
64 1
64
chemin
{pile
; face}
chemin
{
face
pile
}
1
2
3
4
5
6
7
8
o
O
VI. La loi binomiale
Pour reprendre l’exemple du magasin, 3 clients cela fait vraiment peu et il est à prévoir une rapide faillite du dit magasin.
Supposons donc que ce magasin reçoive 20 clients par jour ; Combien compte-t-on de branches finales sur l’arbre d’un schéma de
Bernoulli ?
1 seul client : 2 branches
2 clients : 4 = 2² branches
3 clients : 8 = 2
3
branches
4 clients : 16 = 2
4
branches
5 clients : 32 = 2
5
branches
A chaque fois qu’un nouveau client entre, le nombre de branches finales est multiplié par 2
20 clients : 2
20
plus de 1 000 000 branches !!
Donc au dessus de 4 épreuves de Bernoulli successives faire un arbre devient trop difficile
Heureusement il existe une formule mathématique qui permet de faire ces calculs sans faire d’arbre. C’est ce qu’on appelle la loi
binomiale. On l’écrit B(n ;p)
Malheureusement pour vous cette formule utilise des notions qui ne sont pas au programme de STMG
Alors que faire ?
Utiliser votre calculatrice, il faut au minimum une CASIO 35+ ou une TEXAS ti82 stat
Utiliser un tableur comme EXCEL
Utiliser un logiciel comme par exemple SINEQUANON
Cas particuliers importants
Pour une loi binomiale B(n ; p), il existe quelques cas ou l’on peut calculer des probabilités sans faire d’arbre. Il s’agit du calcul de
p(x = n), p(x = 0) et p(x
1)
En effet pour p(x = n) et p(x = 0) il n’y a qu’une seule façon (un seul chemin) d’obtenir n succès ou n échecs
En remarquant que p(x
1) est le contraire de p(x = 0), (le contraire d’obtenir au moins un succès c’est de n’obtenir aucun succès).
p(x 1)= 1 – p(x = 0),
Exemple :
On jette 4 fois un dé et on veut qu’il tombe sur un « six ». c’est une loi binomiale B
4 , 1
6
p = 1
6 q = 1 – p = 5
6
p(x = 4) = 1
6 ×1
6 ×1
6 ×1
6 =
1
6
4
0,0008 8 chances sur 10 000 que le dé tombe 4 fois de suite sur « six »
p( x = 0) = 5
6 ×5
6 ×5
6 ×5
6 =
5
6
4
0,48 48 chances sur 100 que le dé ne tombe jamais sur « six »
p( x 1) = 1 –
5
6
4
0,52 52 chance sur 100 que le dé tombe au moins une fois sur « six »
1) Diagramme d’une loi binomiale
Voici quelques exemples de diagramme en bâton
Lancé de pièces de monnaie On lance 50 fois de suites une pièce de monnaie et on compte le nombre de fois
qu’elle tombe sur pile
C’est une loi binomiale de paramètres n = 50 et p =0,5 on la note B(50 ; 0,5)
On peut remarquer sur ce graphique :
La plus forte probabilité est de 25 pièces tombée sur pile sur les 50
lancés
Le graphique admet une symétrie axiale (ce qui est toujours le cas
quand p = 0,5)
La probabilité d’avoir moins de 15 pièces ou plus de 35 pièces
tombées sur pile est pratiquement nulle (environs 3 chances sur 1000)
Bon de réduction Reprenons l’exemple du magasin vu plus haut. Supposons que dans la journée il reçoive 20
clients.
La probabilité qu’un client tombe sur pile est p = 0,25
On est en présence d’une loi binomiale B(20 ; 0,25)
La plus forte probabilité est de 5 bons distribués sur 20 clients
Le graphique n’admet pas de symétrie
La probabilité de donner plus de 11 bons est très faible (environ 4 chances sur 1000)
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !